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Although construction process simulation has shown its potential for analyzing earthwork 
productivity, the time-consuming and laborious data collection process remains as a major 
obstacle to implement it in practice. To address this issue, this paper proposes a deep-learning 
based context documentation method for earthmoving productivity simulation. The proposed 
method automatically produces the site access log of dump trucks using a visual sensing process 
consisting of video deinterlacing, convolutional networks, and context reasoning. The site 
access log is then used to construct simulation inputs—the durations of each earthmoving task—
in the form of probabilistic distributions. Using the obtained simulation input data, the 
sensitivity analysis of construction process simulation provides an optimal resource allocation 
plan in a daily basis. A case study was conducted to validate the proposed method and 
demonstrated its applicability in real construction sites. It is expected that the proposed method 
will facilitate accurate decision-makings in earthmoving resource allocation based on real 
construction operational data.

Key Words: Earthmoving; Productivity Analysis; Resource Allocation; Nonintrusive 
Monitoring; Computer Vision; Simulation

Introduction

In construction projects, various earthworks are generally involved with the cutting, filling and moving soils and 
rocks using heavy vehicles such as dump trucks, excavators, bulldozers and compactors. Since earthworks 
comprise a large portion of construction projects in terms of costs and schedules, researchers have long been 
investigated to improve the earthwork productivity by optimizing resource allocation (Parente et al. 2015),
schedules (Hwang et al. 2014), or work sequences (Gwak et al. 2018). Although such previous studies have 
proposed valuable earthmoving analysis methods including construction process simulation that can yield the 
promising productivity improvements, the construction industry still depends on empirical decision making to 
arrange earthwork operations (Gao et al. 2014), especially in outdoor construction sites.  

Regarding this situation, two main reasons were discerned through literature review and interviews with experts 
in the construction industry: First, construction practitioners prefer to plan earthwork operations based on their 
experience due to hectic schedules and the lack of available budgets to analyze the earthwork productivity. Second, 
an earthwork plan established by a laborious analytic process is likely to become obsolete in a short time due to 
the changing geologic conditions and the operational situation of construction projects. Owing to these issues, the 
implementation of existing earthwork analysis methods has been hindered in the construction industry.  

Automating the data collection process for earthwork analysis methods has a potential for solving these issues,
since it has been known as one of the most time-consuming and laborious tasks for earthwork productivity analysis.
As for construction process simulation, such as CYCLONE (Halpin 1977), SIMPHONY (Hajjar and AbouRizk 
1999), and STROBOSCOPE (Martinez and Ioannou 1994), the context of earthworks—the durations of earthwork 
tasks—should be frequently updated to reflect the actual earthwork performance, thereby ensuring the reliability 
of a simulation model and its results (Akhavian and Behzadan 2015; Vahdatikhaki and Hammad 2014). In this 
respect, vision-based monitoring methods have the benefits of automating data collection for earthwork operations, 
as they demonstrated their applicability in various jobsite monitoring applications (Bang et al. 2017; Hamledari 
et al. 2017; Kim et al. 2016; Kim et al. 2017).

However, there are underlying challenges in realizing the benefits of the vision-based monitoring methods in 
outdoor construction sites for earthwork productivity analysis. First, a complex multi-camera monitoring system 
is necessary to monitor large earthwork areas. Accordingly, proper image analysis methods need to be developed 
to deal with a large amount of image data, multi-camera calibration, and the topology of camera views (Wang 



2013). Second, project-related confidentiality or worker’s privacy issues may preclude vision-based monitoring 
for the earthwork productivity analysis.

To address the challenges, this study presents a novel way of automating the earthwork data collection for 
construction process simulation, which employs indirect monitoring of earthwork operations using a 
computational framework consisting of video pre-processing, computer vision, and a context reasoning module 
for earthwork operations, as shown in Figure 1. Through the proposed method as shown in Figure 1, the site access 
log of dump trucks is obtained from jobsite entrance videos by visual analytics which include video recording, 
video deinterlacing, and LP detection and LP recognition; then, the site access log is utilized in the earthmoving 
event reasoning to infer the context of an earthmoving process in which multiple excavators and dump trucks 
interact with each other. Here, the context is represented as the time durations of earthmoving tasks. As a result, 
the durations of each earthmoving task are automatically obtained, and they are used to construct a simulation 
input for simulation. To produce an earthmoving productivity report, a sensitivity analysis regarding different 
numbers of earthmoving resources—excavators and dump trucks—is performed. The underlying research 
question in this paper is as follow: “Can the vision-based context documentation at a site entrance and exit provide 
reliable contextual information regarding earthmoving processes without monitoring real operations?”. To answer 
this research question, this study conducts a case study at a real construction site. The main contributions of this 
study include (1) introducing a novel earthmoving productivity analysis method which integrates nonintrusive 
monitoring and simulation methods, (2) presenting how to achieve the high performance of LP detection and 
recognition in an uncontrolled environment, and (3) demonstrating the reliability of the resulting simulation 
outputs, which helps data-driven decision-making in earthmoving resource allocation. The following sections 
elucidates relevant previous studies, the methodological details of the proposed method, the case study results,
and the discussion.

Figure 1. Overview of the proposed earthmoving productivity analysis 

Related Works

Discrete event simulation (DES), such as CYCLONE (Halpin 1977), SIMPHONY (Hajjar and AbouRizk 1999),
and STROBOSCOPE (Martinez and Ioannou 1994), has been used in previous studies for analyzing earthwork 
productivity because of its advantage in handling uncertainties. It considers uncertainties in the form of 
probabilistic distributions representing the durations of construction work tasks (AbouRizk 2010). However, in 
practice, DES has not been widely used for optimizing earthwork productivity due to the cumbersome data 
collection process for constructing simulation inputs (AbouRizk et al. 2011). To overcome this issue, various 
methodologies have been investigated to automate jobsite data collection processes for enabling the generation of 
contextual information. 



A few studies proposed analytic methods to produce jobsite contextual information regarding earthmoving 
processes from images (Bügler et al. 2017; Kim et al. 2018a; Rezazadeh Azar et al. 2013). The principle of their 
methods is first to detect construction objects such as dump trucks and excavators in images, and then measure 
the durations of each work task through the rule-based context reasoning to record a jobsite activity log. Based on 
the activity log, the parameters of probabilistic density functions that are used in construction process simulation 
can be formulated using density estimation methods such as maximum likelihood estimation (Kim et al. 2018a).
However, as discussed in the introduction, the necessity of a complex video surveillance system or worker’s 
privacy issues may hinder their methods to be implemented in practice, especially for outdoor construction sites.

As an alternative, indirect monitoring of construction operations can be used to infer jobsite contextual 
information; such monitoring methods do not directly monitor jobsite activities by recording construction 
operations, but, for example, record the access of construction vehicles such as dump trucks when they pass 
through a site entrance. Therefore, the challenges of vision-based monitoring (e.g., the necessity of a complex 
multi-camera monitoring system, project-related confidentiality, or worker’s privacy issues) are no longer 
involved. If the site access log contains each vehicle identity with its access time, the durations of earthwork tasks 
can be estimated based on a proper context reasoning module. 

To automate the documentation of the site access log, video data containing the site access information of 
construction vehicles is a requisite; such videos can be obtained by a closed-circuit television (CCTV) or a 
camcorder. To the authors’ best knowledge, the video surveillance system recording a jobsite entrance is generally 
used in many construction projects for security reasons. This study aims at utilizing such available resources to 
analyze earthwork productivity, specifically for an earthmoving process. In this respect, an automatic license plate 
recognition (ALPR) is appropriate to document the site access of construction vehicles. However, jobsite 
monitoring characteristics, such as multi-directional appearances, illumination variations, and low spatial 
resolutions, should be considered for reliable ALPR since small errors in recognition may lead to a large deviation 
in productivity analysis results (Kim et al. 2018a). To secure high accuracy in ALPR, various studies utilized deep 
learning-based object detection models. Deep learning denotes a learning process of specific models which have 
hierarchical deep architectures (Kim et al. 2018b). Regarding visual tasks such as object classification and 
detection, convolutional neural networks have been widely used to employ their capability of extracting 
hierarchical visual features of target objects based on training image data. Nevertheless, the deep learning-based
ALPR models are likely to yield inaccurate performance due to the viewpoint variations (Xie et al. 2018), low 
spatial resolutions (Chen et al. 2016), and motion blur in uncontrolled jobsite environments.

Methodology 

Among various earthwork processes, an earthmoving process is selected to demonstrate the proposed method. To 
produce simulation input data, the site access log is generated by detecting license plates and their numbers from 
videos collected from a site entrance. Since this study uses a video dedicated to monitoring a jobsite entrance for 
security reasons, undesirable issues would be involved in image data contents, such as low spatial resolutions and 
blurriness, multi-directional appearances, motion blur, irregular shapes of target objects, and illumination 
variations. To obtain high performance in license plate detection and recognition, videos are preprocessed to 
reduce motion blur, and then deep convolutional networks detects the license plates and their numbers in dump 
trucks to deal with the remaining issues. Based on the detection results, the durations of each earthmoving task
are estimated, and they are used as an input for construction process simulation—WebCYCLONE. The following 
subsections describe the details of the proposed method from video deinterlacing to simulation, as shown in Figure 
1.

Video deinterlacing for improving the visibility of license plates in jobsites

At the jobsite entrance, a camcorder records the site access of dump trucks passing through without stopping. The 
movement of dump trucks leaves motion blur in video frames along with the flow of their motion. Motion blur in 
video frames significantly degrades the detection performance for license plates and numbers, since their 
appearance become vague in such situations as shown in Figure 2. To reduce motion blur in video frames, a video 
deinterlacing technique by linear interpolation is used, which adjust each pixel value based on its adjacent pixel 
values. For example, when applying video deinterlacing by linear interpolation with respect to a video frame, a 
pixel in odd pixel lines has its pixel value by averaging two adjacent pixel values at even pixel lines. For the next 
video frame, the same operation is applied to the even pixel lines. The right part of Figure 2 shows a result of 
video deinterlacing.



Figure 2. Effects of video deinterlacing (Left: before deinterlacing, Right: after 
deinterlacing). 

License plate detection for dump trucks 

Although motion blur can be removed by video deinterlacing, the remaining challenges still need to be addressed 
to obtain accurate detection results regarding license plates and their numbers. This study employs a convolutional 
network and customize it to detect the target objects, building on a region-based fully convolutional networks (R-
FCN) (Dai et al. 2016). In general, convolutional networks require a large amount of training data for each class
to be trained, otherwise the overfitting problem impairs the detection accuracy. To alleviate the overfitting 
problem, transfer learning is applied to train the R-FCN model. In transfer learning, a pre-trained model using a
large amount of training data in different domains is re-trained with the relatively small amount of training data 
in this study. By doing so, the robust detection capability of convolutional networks is maintained, thus, the 
reliability of the earthmoving contextual information can be improved. To deal with varying sizes of target objects,
the range of anchor boxes, which are candidate regions likely to have the target objects—is changed from 1282,
2562, 5122 pixels to 82, 162, 322, 642, 1282, and 2562 pixels. Moreover, to further reduce the overfitting issue,
training image data is augmented by changing pixel’s intensity value in each color channel, or adding frequency 
noises, contrast, Gaussian blur, average blur, and median blur, as shown in Figure 3.

Figure 3. Examples of image augmentation

License plate recognition and simulation input estimation 

The detection results include the presence of license plates and plate numbers in each image. With the video frame 
rate of 30, hundreds or thousands of video frames are recorded within a short time, which have the same dump 
truck. In some cases, the detection results may vary from other video frames, and this causes an error in measuring 
the durations of earthmoving tasks. To secure the high accuracy, three rules are implemented in the license plate 
recognition algorithm, as shown in Figure 4: (1) performing the detection of license numbers only when the width 
of a detected license plate exceeds 150 pixels; (2) documenting license plate numbers when the number of detected 
license plate numbers is exactly seven; and (3) filtering out the license plate numbers when these are not matched 
with registered license plate numbers of dump trucks. Based on these processes, the reliable site access log can be 
produced. The site access log is then used to measure the time durations of earthmoving tasks for constructing an 
input—parameters of probabilistic distributions—for construction process simulation.



  
Figure 4. Algorithm for license plate recognition

Site access log-based productivity simulation analysis 

The site access log includes the arrival and departure time of each dump truck at the site entrance, and this 
information is used to estimate the durations of a loading, hauling, and retuning tasks. An interval between the 
arrival and departure time of the same dump truck is used to measure a single loading duration. Likewise, an 
interval between the departure and arrival time of the same dump truck is used to measure a hauling duration and 
a returning duration, by dividing the time of the round trip by two to record each duration. WebCYCLONE (Web-
Cyclic Operation Network, Halpin et al. (2003)) is selected as a simulation tool for the earthmoving process, since 
it has been validated by many studies regarding productivity analysis in the construction domain (Halpin et al. 
2003). An earthmoving simulation model is designed to include two COMBI elements for loading and dumping 
tasks, and two NORMAL elements for hauling and returning tasks. The durations for these elements are 
constructed as beta distributions by the method-of-moments (Bain and Engelhardt 2000), which estimates the 
shape parameters of a beta distribution based on the given data—the site access log, as follows:  

(1)

(2)

where is the sample mean and is the sample variance. 

Experimental results and discussion

The experiments were performed using a normal desktop with Intel i7-6700 CPU and a GeForce GTX 1080 in 
the Ubuntu 16.04 operating system. As a case study, an actual earthmoving process at a construction site in South 
Korea was investigated, where four excavators and eighteen dump trucks were interacting with. A SONY HDR-
CX450 camcorder was used to record the site entrance video with the resolution of 1920×1080 for an entire day. 
The proposed context estimation method was tested on this video, and the precision of 97.06% and the recall of 
92.94% were recorded in license plate recognition. As shown in Figure 5, the proposed method successfully 
identified license plates and numbers in the uncontrolled environment. Without video deinterlacing, the 
performance was significantly degraded to the precision of 90.48% and the recall of 40.71%. These results imply 
the importance of video deinterlacing in monitoring at a construction site entrance, and the applicability of deep 
convolutional networks in detecting varying sizes of objects in an uncontrolled environment. Based on the license 
plate recognition results, the daily site access log was produced, and it was used to estimate the shape parameters 
of beta distributions, resulting in of 0.750 and of 2.345 for loading tasks, of 1.328 and of 2.490 for hauling 
and returning tasks.



Figure 5. Examples of the license plate detection results (Left: a detection result in a video 
frame, Right: detection results enlarged at license plates).

At the case study site, the total planned earthmoving volume was 258,047m3 with four excavators and eighteen 
dump trucks. The validity of a simulation model was tested by comparing the simulation results with the actual 
earthmoving performance. The difference was only 3.24% with respect to the time spent for the same number of 
earthmoving cycles, which proved that the simulation model was valid. After performing simulation, the current 
resource allocation was identified to be suboptimal, recording the idle time of 68.75% for excavators and 13.34% 
for dump trucks, as shown in Table 1. Based on the comprehensive list of productivity indices as shown in Table 
1, site managers can compare the expected results with different numbers of dump trucks. Since the required 
information to optimize the earthmoving process varies depending on situations, site managers may set certain 
criteria to allocate earthmoving resources using one or more of these productivity indices. In this study, the Unit 
cost ($/m3) is set as the main criterion for the resource allocation. By reducing the idle time of excavators while 
using 24 dump trucks, the earthwork productivity is expected to be improved such that both the original schedule 
and cost are reduced by 23.94% and 3.47%, respectively. Although an amount of reduced costs is not that 
significant when 24 dump trucks are used, it is expected that the reduced schedule may also reduce associated 
indirect costs in earthmoving operations.

Table 1. Simulation results with a different number of dump trucks 

Number of dump trucks 18 24
Process cycle per hour (cycle/h) 12.60 16.56
Productivity per hour (m3/hour) 214.2 281.5

Rental cost per day ($/day) 12,442 15,785
Total production of a day (m3/day) 1820.7 2392.9

Unit cost ($/m3) 6.83 6.60
Idle time of excavators (%) 68.75 34.86

Idle time of dump trucks (%) 13.34 41.46
Estimated earthmoving period (day) 142 108
Estimated total earthmoving cost ($) 1,763,395 1,702,174

Conclusion 

The construction industry has been suffered from the inefficiency of data collection and communication due to 
the unique project-based nature, thus, it is difficult to make data-driven decisions in various aspects. This study 
dedicated to address this issue by automating the data collection process in earthmoving processes based on vision-
based monitoring techniques. Moreover, construction process simulation was integrated with the vision-based 
monitoring system, to further automate the process of productivity analysis in earthmoving operations. The 
proposed method demonstrated its capability in this respect, building on the deep-learning based earthmoving 
context reasoning and the WebCYCLONE simulation. Despite the applicability of this method in an earthmoving 
process, further study is required to increase its generalization capability for the dissemination of vision-based 
productivity analysis methods in various stages during construction projects. One area of further studies is to 
improve the visual recognition performance for target objects having insufficient geometric features. For example, 
it was relatively hard to detect the object class “one” due to its monotonous shape. In jobsites, there are many 
objects having less geometric features such as steel beams, therefore, it would be helpful to investigate a method 
to robustly detect such target objects. In addition, the current study only analyzed a single earthmoving 



construction process, but further study needs to be conducted to increase its capability in analyzing multiple 
construction operations at the same time. Meanwhile, various external factors affecting the productivity of 
construction operations should be also considered to realize a robust data-driven decision support system. 
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