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Quantification of project cost performance plays an essential role in any decision-making process in any 
transportation infrastructure projects. Project characteristics, such as facility type, project type, and complexity
are critical factors that certainly affect predictions and classifications of cost performance. Due to the fact that 
project complexity and other project attributes are often given in terms of subjective judgements and ratings of 
experts, it is difficult to quantify those qualitative data types. This research implemented the fuzzy set theory in 
the context of fuzzy cluster analysis to classify/partition input data of cost performance and project characteristics 
into meaningful groups. The fuzzy classification process was conducted with a dataset of 254 horizontal 
transportation projects collected by the Federal Highway Administration (FHWA) in 2012. As a result, this paper 
shows the applicability of fuzzy cluster analysis within the construction industry with common cluster validity 
indices. This research contributes to the construction body of knowledge and practitioners a new method to 
classify cost performance data and understand its underlying structures and behaviors. Future work of this study 
is to examine other project performance measurement metrics, such as schedule performance and quality. 

Key words: fuzzy set theory, fuzzy c-means cluster analysis, cost performance, project complexity

Introduction

Cost performance is one of the key criteria for construction project owners and stakeholders to consider in any 
decision-making process. Determination of cost performance is varied on a project-to-project basis and depends on 
many factors, including project characteristics, internal and external conditions, and other features (Baccarini 2004). 
During feasibility, planning, and design stages, cost estimates are prepared in detail based upon project 
characteristics and take into account potential costs for associated project uncertainty and complexity (Creedy et al.
2010). Due to the fact that different levels of project complexity drive the estimated cost performance diversely, it is 
important that both industry practitioners and academic researchers need to generate empirical and sufficient 
methods/frameworks/models to quantify cost performance based on project characteristics. 

Traditionally in construction, cost performance is measured and estimated based on probabilistically mathematical 
frameworks and simulation models (Creedy 2006, Dikmen et al. 2007). Among the factors that affect cost 
performance, levels of project complexity and uncertainty play an important role in establishing more 
deterministically predicting results (Hegazy and Ayed 1998). However, uncertainty and complexity are often given 
in terms of linguistic input variables. In other words, those factors are assessed based on experience of professionals 
and experts in the context of subjective judgements. One of the weaknesses of probability theory and simulation 
methods is not able to quantify qualitative input data (Hastie et al. 2009). Despite the fact that those methods are 
often considered to quantity project characteristics and other attributes, a more comprehensive method, which can 
incorporate quantifications of both quantitative and qualitative input data, is necessary. Hegazy and Ayed (1998)
declared that fuzzy set theory is useful in the construction industry where realistic historical project data are limited. 

In the field of engineering, fuzzy set theory has been used to capture qualitative domain professional judgements to 
generate theoretical decision-making models and widely applied to many areas, such as computer science, 
mechanical engineering, aerospace engineering, and chemical engineering (Elwood 2014, Kruse et al. 2007). As a 
promising method to mathematically take into account the subjective judgements and expressions of construction 
professionals and experts about project complexity, fuzzy set theory was applied in this study in terms of a soft 
clustering method introduced by Bezdek (1993). This method is also known as the fuzzy c-means (FCM). 



Literature Review

In order to measure and predict project performance in construction, many studies have proposed various 
applications of fuzzy sets. Baccarini (2004) and Creedy (2006) showed that utilizing fuzzy sets is one of the 
essential methods of estimating construction project cost contingency in terms of conceptual models to reduce 
impacts of risks and uncertainty. Paek et al. (1993) proposed the use of fuzzy set application in a risk-pricing model 
to identify and quantify project risks to estimate project cost under uncertainty. A fuzzy decision-aid framework to 
take into account global risk factors that affect cost performance was established by Baloi and Price (2003), which 
indicated how well fuzzy set theory is viable for modelling and examining project risks. Dikmen et al. (2007) 
recommended the use of fuzzy sets in generating a fuzzy risk assessment method to estimate project cost-overruns 
based on risk ratings. However, those studies have mainly focused on fuzzy logic applications, such as fuzzy 
systems and models, to support decision-making processes. Another critical feature of fuzzy sets is to classify or 
partition data into meaningful clusters to recognize typical patterns of given datasets (Hoppner et al. 1999, Zadeh
1978). Practicing fuzzy classification enhances understanding, handling, and predicting data information and 
behavior, which is essential in investigation of construction project performance based on empirical data. Fuzzy 
classification is often demonstrated in the context of fuzzy cluster analysis. 

Cluster analysis is one of unsupervised machine learning techniques used to classify data based on similarities in 
attributes, features, and other characteristics. It concentrates on grouping data to identify and study underlying data 
structures (Hoppner et al. 1999, Klir and Yuan 1995). There are two common types of cluster analysis: (1) hard 
cluster analysis, which is developed based on crisp sets, and (2) soft cluster analysis, which is formulated based on 
fuzzy sets or fuzzy set theory. The scope of this research was to enhance fuzzy set theory to deal with qualitative 
input data of complexity’s ratings; therefore, a soft cluster analysis or fuzzy cluster analysis was conducted. Fuzzy 
cluster analysis is different from the crisp cluster analysis in terms of assigning membership values to the clustered 
data points instead of limiting a single data point to belong to only one cluster (Elwood 2014). This characteristic 
helps fuzzy cluster analysis can implement in any given real-world problem.

Research Objectives

The motivation of this research was to search for underlying structures of cost performance in empirical 
transportation project data based on project characteristics and classify these structures into meaningful clustering
groups. Degrees of similarity and dissimilarity of empirically collected project data give a precise representation of 
cost performance within the domain of transportation infrastructures. This study has three main research objectives,
which are based upon three fundamental problems of cluster analysis, as follows:

The first objective aims to investigate if the dataset is actually clusterable by assessing clustering tendency of the 
dataset. The assessment investigates if cluster analysis is appropriate for this type of datasets in consideration of 
establishing meaningful clustering groups of cost performance from individual empirical transportation projects. In 
other words, this question determines if utilizing cluster analysis provides valid generalizations of typical groups of 
cost performance based on typical transportation project characteristics, such as facility type, project type, and 
complexity. 

The second objective aims to solve the problem of establishing the “best” number of partitioning groups. An
appropriate cluster analysis algorithm should be selected in order to examine input data of quantitative project 
characteristics and qualitatively subjective judgements of project complexity. The fuzzy c-means method was 
selected because of its capacity of studying linguistic/fuzzy information and modeling common groups of cost 
performance. The key mechanism of this clustering algorithm is to evaluate heterogeneity, the overall diversity 
among data points in all of the clusters. Increasing in heterogeneity leads to merging of dissimilar clusters, which 
reduces opportunities to determine the most optimal number of clusters. 

The third objective aims to validate the appropriateness of the identified numbers of clusters with multiple fuzzy 
clustering indices. Theses clustering indices assess membership levels of data points in each cluster to affirm if the 
data points actually belong to that cluster. Due to the fact that fuzzy cluster analysis belongs to an unsupervised 
learning environment, no validation is actually required. In addition, determination of the proper number of clusters 
is also intuitive and depends on experience of analysts. Therefore, it is challenging to explicitly declare the best 



number of clusters. However, using clustering indices certainly helps verify and confirm suitability of the identified 
cost performance’s clusters.

Methodology

Data Collection

This research paper investigated an empirical dataset of 254 horizontal transportation projects within 50 states in the 
U.S., from a Federal Highway Administration (FHWA) survey in 2012. Collected projects consist various 
characteristics of facility type, project type, highway type, complexity rating, and project cost and schedule data. 
Fuzzy cluster analysis is critically influenced by outliers, so identified outliers of the dataset were removed. The 
sample size of this dataset is adequate to use with cluster analysis because no statistical inference power is 
considered within this domain. In other words, cluster analysis only provides the representativeness of the sample 
within the underlying structure. No normality, linearity, or homoscedasticity was assumed with this dataset. Prior to 
conducting cluster analysis, selection of major input features/variables was required. This study selected five 
common variables (project characteristics) in order to conduct cluster analysis as shown in Table 1.  

Table 1 

Descriptive statistics of selected project characteristics

Project Characteristic N Data Type Mean Min Max
Facility Type – Road (%) 254 Continuous 45.56 0 100
Facility Type – Bridge (%) 254 Continuous 33.58 0 100
Facility Type – Drainage (%) 254 Continuous 6.71 0 100
Facility Type – ITS* (%) 254 Continuous 3.08 0 100
Facility Type – Other (%) 254 Continuous 11.10 0 100
Project Type – New Construction (%) 254 Continuous 45.47 0 100
Project Type – Reconstruction (%) 254 Continuous 39.46 0 100
Project Type – Other (%) 254 Continuous 15.07 0 100
Complexity 254 Ordinal 2 1 3
Cost Growth (%) 254 Continuous 3 -10 20
Note. *ITS - Intelligent Transportation System

The first variable is facility type, which consists of five sub-variables: road, bridge, drainage, intelligent 
transportation system (ITS), and others, based on approximate percentages of the total project cost. The range of 
each type is from 0 to 100%. For example, a transportation project might have 80% of road, 10% of bridge, and 10% 
of ITS; the total should be always 100%. Facility type contains continuous data and provides five input variables.
The second variable is project type, which includes three sub-variables: new construction/expansion, 
reconstruction/rehabilitation/resurfacing, and others, based on approximate percentages of the total project cost. 
Similarly to facility type, the range of each type is from 0 to 100%, and it follows the continuous data type. For 
instance, a transportation project might have two-thirds of new construction and one-third of resurfacing. Project 
type provides three input variables. The third variable is project complexity, which is rated based on a 3-point Likert 
scale and follows the ordinal data type. First, the “most complex” projects include those that are new 
highways/major relocations, new interchanges, capacity adding/major widening, major reconstruction, require 
congestion management studies, and have complex environmental assessment or environmental impact statements.
Second, the “moderately complex” projects include those that are minor roadway relocations, non-complex bridge 
replacements with minor roadway approach work, and non-complex environmental assessment required. Third, the 
“non-complex” projects include those that are maintenance betterment projects, overlay projects with simple 
widening, little or no utility coordination, non-complex enhancement projects without new bridges, and categorical 
exclusion. The final selected variable is cost performance. Several data points were collected to understand the cost 
performance of each project within the dataset, such as the engineer’s estimate, contract award value, and final cost. 
The final cost is equal to the contract award plus costs of all change orders. To represent the cost performance 



variable, this study used cost growth, which is the overall performance at project completion, calculated from the 
project cost data with the following equation: 

Cost Growth (%) = (Final Cost – Contract Award)*100/ Contract Award  (1)

The calculated cost growths were divided into five linguistic groups ranging from -10% to 20%: “saving” from -
10% to -1%, “none” from -1% to 1%, “low” from 1% to 5%, “medium” from 5% to 10%, and “high” from 10% to 
20%. This study removed three projects which contain completely missing cost growth values and eighteen projects 
which have extreme cost growth values out of the selected range. The majority of the cost growth values fall within 
the range from -1% to 5%. 

Data Analysis  

The process of fuzzy cluster analysis in this study included four key steps: data standardization, data clustering 
tendency’s assessment, clustering c-means algorithm, and validation of clustering results. These analyses were 
conducted in the R programming environment with multiple clustering packages.

The dataset of selected variables were standardized prior to conducting fuzzy cluster analysis. Because selected 
variables were collected in different units, it is not meaningful to assess similarity/dissimilarity of the data points. In 
order to assess the similarity of two projects, cluster analysis calculates the Euclidean distance between them, which 
is a geometric measure of closeness between data points (Castellano et al. 2007). The value of this distance is 
closely related to the measuring scale of selected variables and influences the shape of the clusters (Chiu 1994).
Thus, selected variables were standardized to a unified scale to avoid impacts of dissimilarity measures. Within the 
domain of fuzzy cluster analysis, ranging is one of the recommended methods where comparisons of data points are 
more proper, and its equation is as below (Elwood 2014, Hoppner et al. 1999). Accordingly, the standardized data 
ranged from 0 to 1. 

This research evaluated data clustering tendency to confirm the feasibility of cluster analysis. Specifically, this 
process examined whether or not the dataset potentially produces meaningful clusters/groups. It is crucial to assess 
the tendency of the dataset because of a critical issue of cluster analysis where the algorithm will return a number of 
clusters even if the dataset does not consist of any meaningful clustering group (Kruse et al. 2007). There were two 
methods for assessing the clustering tendency used in this research: (1) statistical with Hopkins statistics and (2) 
visual assessment of cluster tendency (VAT) algorithm. The Hopkins statistics method measures the probability with 
which the given dataset is established by a uniform data distribution in order to examine the spatial randomness of 
the dataset which determines if meaningful clusters exist (D’Urso 2007). The null hypothesis of this method is that 
the dataset is uniformly distributed while the alternative hypothesis is that the dataset is not uniformly distributed. 
The VAT method provides the graphical determination of the clustering tendency. This step identifies applicability 
of cluster analysis to the dataset. 

FCM algorithm, the most well-known clustering method for fuzzy cluster analysis according to (Bezdek et al. 1999), 
was implemented to partition the dataset in terms of cost growth. The main objective of this algorithm is to 
partition/classify all data points into homogeneous clustering groups where the data points achieve higher levels of 
similarity in the same clusters and contain lower levels of similarity in other clusters. The similarity of the data 
points is measured by geometric proximity or distance in an n-dimensional space. The result of the FCM algorithm 
provides a family of fuzzy sets where clustering groups are generated based on the membership values; the closer 
the data points within the cluster, the higher membership value (Kruse et al. 2007). The main attribute of FCM is 
that an individual data point shares membership with more than one cluster (Elwood 2014). In other words, each 
data point is assigned a degree of membership in each cluster, so a data point can belong to multiple clusters, which 
shows the overlapping characteristic of fuzzy clustering groups. In the context of fuzzy cluster analysis, no cluster is 
empty as well as no cluster can contain all of the data points, axiomatically. A particular restriction of FCM is that 
the sum of membership values of an individual data point across all clusters should be equal 1. The essential 
outcomes of FCM are a fuzzy c-partition matrix, where the degree of membership of a data point in a specific cluster
is described, and a vector of cluster center coordinates, which provides underlying prototypes or prototypical 
representations of the clustered data points. After clustering, the partitioned data should be hardened to classify the 
data points into actual crisp clustering groups for subsequent humanistic judgements; this process is called 



defuzzification. The defuzzification method used in this research is the maximum membership values, which the 
most common method of reducing fuzzy information into a single crisp value in the field of fuzzy set theory. 

To fuzzily partition project data, the FCM method considers an optimization function which attempts to 
simultaneously minimize the distance between data points within clusters and maximize the distance between 
clusters. This optimization function is used to support the determination of the optimal number of clustering groups,
which is subjective and depends on measurements of similarity and clustering parameters. This research utilized two 
direct methods (or visualization): Elbow method and Silhouette method, and two statistical methods: gap statistics 
and NbClust method, in order to select the most appropriate number of clusters. The Elbow method selects a number 
of clusters from which adding another cluster does not increase the total within sum of squares, measured by the 
total distances between data points. The Silhouette method evaluates how well each data point lies within the 
associated cluster; in other words, this method measures the clustering quality (Ross 2010). The optimal number of 
clusters is the one that achieves the highest value of the average silhouette. The gap statistics method produces the 
optimal number of clusters by comparisons of the total within intra-cluster variation for different numbers of clusters 
with statistically anticipated values. The maximum gap statistic value provides the optimal number of clusters. The 
NbClust method examines thirty clustering indices to select the optimal number of clusters based upon the majority 
rule. This step determines the number of meaningful clusters. 

To evaluate the goodness of FCM algorithm clustering outcomes, five clustering indices, partition entropy, partition 
coefficient, fuzzy silhouette index, the Dunn index, and the silhouette width, were used. Using cluster validity helps 
avoid randomness in identifying clusters to provide better recognition of underlying structures within the dataset. 
This step addresses the problem of validating the clustering results.

Results

Evaluation of Data Clustering Tendency 

Investigation of tendency assessment with two methods, Hopkins statistic and VAT, confirmed that the FHWA 
dataset contained meaningful clustering groups with five selected variables: facility type, project type, complexity,
and cost growth. In the first method, if the Hopkins statistic is close to zero, the null hypothesis of the dataset of
uniformly distributed is rejected. As a result, the hypothesis testing provided a Hopkins statistic of 0.274 which is far 
below the threshold of 0.5 and concluded that the FHWA dataset is significantly clusterable. In the second method,
the clustering tendency is visually assessed by counting the amount of dark squares along the diagonal of a 
dissimilarity matrix in the VAT image. This method was also in line with the Hopkins method to confirm that there 
was a clustering structure in the FHWA dataset.

Identification of Optimal Numbers of Clusters

Selection of an optimal number of clusters is subjective and depends on methods of similarity measurement and 
clustering parameters. This study utilized two visualization-based techniques, elbow and silhouette, and two 
statistics-based approaches, gap statistics and Nbclust, to determine the most optimal number of clusters. The elbow 
method visualizes the total within sum of square (WSS), which is calculated based on distances between data points 
in a cluster, to identify the minimum value of WSS or the elbow of the WSS’ graph. This method recommended a 
range of the optimal numbers in which seven was the most optimal option. The silhouette technique computed the 
average silhouette width, which measures how well the clustering result is; the higher the average silhouette width, 
the better the clustering result. This method recommended six optimal options (two, three, four, six, seven, and 
eight) where seven was observed with the highest silhouette width. The gap statistics method selects the optimal 
number of clusters by comparing the WSS of different numbers of clusters with statistically anticipated values. The 
option producing the maximum value of the gap statistic was selected, which was the seven-cluster option. The last 
method, NbClust, which is a R programming-based function using thirty clustering indices to identify the most 
optimal number of clusters, proposed the seven-cluster option should be selected. As a result of the four methods, 
the range of the potential numbers of clusters was from two to ten clusters, and the most selected optimal number of 
clusters was seven. Accordingly, seven clusters were pre-defined as the input for the number of cluster centers to the 
FCM algorithm. 



With the recommendation of seven clusters and N = 254 projects (data points), the FCM algorithm first identified
seven cluster centers, and then assigned data points to the appropriate clusters based on the closeness of the data 
points to the cluster centers by calculating the distances between them. Essentially, this algorithm concurrently
minimized the distance between data points within a cluster and maximized the distance between seven clusters
based on similarity and dissimilarity in five selected features: facility type, project type, complexity, and cost 
growth. A detailed process of using FCM to minimize the within-cluster distances and maximize the between-cluster 
distances is provided in Ross (2010) and Klir and Yuan (1995). 

Table 2 summarizes characteristics of clustering groups of cost growth based on the majority rule of fuzzy cluster 
analysis which proposes that data points belong to the cluster obtaining the maximum value of memberships. Group
1 represents transportation projects with saving to low cost growth. Group 2 represents transportation projects with 
low cost growth. Group 3 represents transportation projects with medium to high cost growth. Group 4 represents 
transportation projects with saving to low cost growth. Group 5 represents transportation projects with low cost 
growth. Group 6 represents transportation projects with none cost growth. Group 7 represents transportation projects 
with none to low cost growth.

Table 2

Characteristics of clustering groups of cost growth 

Characteristic of 
Cost Growth

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 

Clustering Range 
(%)

[-10, 5] [1, 5] [5, 20] [-10, 5] [1, 5] [-1, 1] [-1, 5]

Linguistic 
Description

Saving to 
low

Low
Medium 
to high

Saving to 
low

Low None
None to 

low

Discussion

Although conducting cluster analysis does not require any comprehensive validation process due to the fact that it is 
an unsupervised machine learning technique, the goodness of determination of the optimal number of meaningful 
clusters is critical for reliability of clustered results. This research employed five common cluster validity indices in 
the domain of fuzzy cluster analysis. The partition entropy has the decision criteria ranged from 0 to 1: 0 is 
excellent, 0 to 0.5 is good, 0.5 to 1 is fair, and 1 is bad; accordingly, the partition entropy index should be minimized
( 2017). The clustering result showed that the partition entropy obtained a value of 0.46, 
which is good. The other indices (partition coefficient, fuzzy silhouette, silhouette width, and Dunn index) have the 
decision criteria ranged from 0 to 1: 0 is bad, 0 to 0.5 is fair, 0.5 to 1 is good, and 1 is excellent., which means these 
indices should be maximized to have more accurate clustering results (Pal et al. 1995, Wu and Yang 2005). The 
clustering result represented a fair partition coefficient (0.11), a fair fuzzy silhouette (0.44), a good silhouette width 
(0.58), and a fair Dunn index (0.11). According to the selected five common cluster validity indices, the result of 
seven clusters are valid and reliable in the field of fuzzy cluster analysis.

Conclusion

Identifying meaningful groups of cost performance based on given project characteristics, including facility type, 
project type, and project complexity, is an important task in construction in order to optimize decision-making 
processes. This research paper quantified cost performance associated with project characteristics in transportation 
construction based on fuzzy set theory in terms of an unsupervised learning technique, fuzzy cluster analysis. As a 
result, seven clustering groups of cost performance based on facility type, project type, and complexity were 
recognized and divided into five major clustering groups based on cost performance. The first clustering group was 
recognized with saving to low cost growth transportation projects. The second group was recognized with none cost 
growth transportation projects. The third group was recognized with none to low cost growth transportation projects. 
The fourth group was recognized with low cost growth transportation projects. The fifth group was recognized with 



medium to high cost growth transportation projects. The validation section shows that the identified groups of cost 
growth were valid, which indicates the positive applicability of fuzzy cluster analysis in construction. This study 
contributes the five typical cost performance groups to support decision makers and agencies in the feasibility and 
planning phases of the transportation project. A limitation of this study was that only transportation projects were 
considered. This research plans to implement fuzzy set theory to other project performance measurements, such as 
schedule performance and quality. In addition, more project attributes, including project size, project delivery 
method, procurement method, and payment method should be incorporated. 
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