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There are more than 650,000 bridges in the United States. The US Department of Transportation 
requires routine inspections every 24 months to monitor bridge deterioration. The 24-month 
inspection interval was determined in early 1970s solely based on engineering judgement
regardless of the current condition of the bridges. This uniform interval approach has resulted in a 
very costly and inefficient quality control process. This study presents a probabilistic approach to 
forecast bridge deterioration and statistically determine the optimal inspection intervals. A
probabilistic model based on the classic Markov process is created to predict future bridge 
conditions based on historical data. A statistical process is developed using the forecasting model
to determine the optimal inspection intervals. The proposed methodology in this study is 
implemented on a dataset consisting of information about more than 27,000 bridges in Ohio from 
1992 to 2017. The forecasting results indicate that the model can predict future bridge conditions 
with less than 3.5% error. The outcomes of the statistical analysis indicate that the typical 24-month 
inspection interval is considerably pessimistic and not necessary for all bridges currently in 
condition 5 or higher. However, the 24-month interval is too optimistic and risky for bridges 
currently in condition 4 or lower. This study helps decision makers determine optimal bridge 
inspection intervals to monitor and protect depreciated bridges more carefully and use maintenance 
resources more efficiently.
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Introduction

The National Bridge Inspection Standard (NBIS) developed by the Federal Highway Administration (FHWA) 
requires regular and periodic inspection of more than 650,000 bridges in the United States. The typical inspection 
interval is 24 months (FHWA 1988). Based on the NBIS procedure, whenever a bridge is inspected, a rating 
condition from 1 to 9 is assigned to the bridge. Table 1 describes the bridge condition ratings by the NBIS.

Table 1

NBIS Bridge Condition Rating

Condition Rating Description

9 Excellent Condition
8 Very Good Condition
7 Good Condition
6 Satisfactory Condition
5 Poor Condition
4 Fair Condition
3 Serious Condition
2 Critical Condition
1 Imminent Failure Condition

The 24-month routine inspection interval was determined by the FHWA in 1970s solely based on engineering 
judgement, regardless of the current condition of the bridges. This uniform interval approach has resulted in a very 
costly and inefficient process (Nasrollahi and Washer 2014, Reising et al. 2014, and Washer et al. 2016). Many 



bridges in proper condition do not need to be inspected every 24 months. On the other hand, some bridges with a 
high deterioration rate may need a shorter inspection period. 

Today, the availability of historical records of bridge conditions allow the creation of a systematic process based on 
historical deterioration data to empirically determine the optimal inspection interval. This study presents a data-
driven approach to systematically determine the optimal inspection intervals. The outcomes of this study will help 
decision makers quantitatively determine inspection intervals, thus using bridge inspection resources efficiently and 
saving millions of dollars that can be invested in other infrastructure development projects.

Although finding optimal inspection intervals is critical, most previous studies in this area focused on modeling 
bridge deterioration rates. Madanat et al. (1995) developed a probit model with a random-effect specification for 
bridge-deck deterioration. Miyamoto et al. (2000) proposed a biquadratic deterioration curve for concrete bridge 
members. Bolukbasi et al. (2004) tried to analyze the relationship between bridge condition rating and bridge age by 
simply fitting a third-degree polynomial line and compared deterioration rates for decks, superstructures, and 
substructures. Morcous (2006) investigated the validity of Markov chain basic assumptions for the infrastructure 
deterioration process. Zhang et al. (2008) developed a discrete event simulation to find an optimal combination of 
resources in bridge-deck rehabilitation projects. Agrawal et al. (2010) described an approach based on the Weibull 
distribution to create bridge element deterioration curves. Tolliver and Lu (2012) analyzed the relationship between 
bridge deterioration rates and age; they observed that the relationship between these two factors is linear for bridges 
less than 65 years old, after which they have a polynomial relationship. Nasrollahi and Washer (2014) conducted a 
statistical analysis to find the best conventional distribution that describes the distribution of the time that a bridge 
may stay in one specific condition; the fitted distributions for different condition ratings showed that, on average, 
bridges stay in higher conditions for longer periods and the 24-month maximum inspection interval is pessimistic. 
Washer et al. (2016a) developed a framework for risk-based bridge inspection that identifies bridges for which 
inspection intervals shorter or longer than 24 months are more appropriate; their proposed framework uses a 
qualitative approach based on a simple risk matrix. Washer et al. (2016b) conducted two case studies to present the 
implementation of their proposed framework. Ghodoosi et al. (2017) developed a genetic algorithm model to 
optimize lifecycle costs of bridge utilization. Ghonima (2017) created a binary logistic regression to analyze the 
effects of bridge characteristics such as Average Daily Traffic (ADT), age, deck area, and number of lanes on 
deterioration rate. 

Although previous studies provide useful insights and information about the bridge deterioration process, little is 
known about a systematic and quantitative approach to empirically determine inspection intervals based on 
historical data. This gap in knowledge makes it difficult to use facility management resources efficiently. The 
objective of this study is to create and test the applicability of probabilistic models to determine optimal inspection 
intervals based on historical inspection data. 

The inspection records of more than 27,000 bridges in the state of Ohio from 1992 to 2017 were collected. A 
statistical forecasting model based on the classic Markov process is created. A probabilistic process based on 
organizations’ (i.e., bridge owners) risk tolerance then is conducted to determine the optimal inspection intervals. 
The remainder of this paper is structured as follows: First, the National Bridge Inventory (NBI) dataset is briefly 
introduced. Next, the research methodology and steps conducted in this study are described. The proposed 
methodology is then applied to the Ohio NBI dataset to statistically determine the optimized inspection intervals and 
evaluate the performance of the proposed methodology. Finally, the results are presented, and future works are 
recommended.

NBI Dataset: Data Preprocessing and Cleaning 

The NBI is a publicly available dataset published by the FHWA consisting of detailed information including bridge 
condition values for all bridges in the US. Currently, the recorded data from 1992 to 2017 are available (FHWA 
2018). With 27,345 bridges, Ohio has the second highest number of bridges in the country after Texas.

Because a condition rating of 3 indicates a serious problem, bridges with a condition rating of 3 or less need 
immediate attention and typically undergo major rehabilitation (Nasrollahi and Washer 2014). Therefore, in this 
study, these three ratings were combined to develop the caution condition, indicating bridges that need particular 



attention. During the inspection process, it is critical to predict whether the bridge will transition to this condition in 
the near future.

Deterioration of a bridge results in a transition from a higher condition rating to a lower condition rating. Therefore, 
typically, a bridge stays in its current condition or transitions to a lower condition rating unless it undergoes 
rehabilitation or there is an error in data collection. Because the focus of this study is deterioration through time, 
upward transitions from lower ratings to higher ratings were removed from the dataset. Furthermore, miscoded 
ratings with value of 0 or N were removed from the dataset as well. These data preprocessing operations were 
suggested by previous studies, such as that by Nasrollahi and Washer (2014). The proposed data preprocessing and 
cleaning operation led to removal of less than 5% of the original data.

Research Methodology

Deterioration of a bridge through its lifecycle can be analyzed by a discrete function that models the transition from 
higher condition rates (e.g., 9 when the bridge is newly constructed or recently maintained) to lower condition 
ratings. These transitions can be modeled using a Markov chain process (Morcous (2006) and Agrawal et al. 
(2010)). The classic Markov chain model is a memoryless stochastic process that predicts transitions of a variable 
among discrete states solely based on its current state.

The main component of a Markov process is the transition matrix that describes the probability of a transition from 
one state to another. The elements of the transition matrix are calculated using the historical data, as follows:

where

is the probability of a transition from state i to state j
is the total number of transitions from state i to state j within a given time period

is the total number of bridges in state i before transition
Using the transition matrix, future states can be predicted as follows:

where 

S(t) is an array that shows the state at time t
S(t+n) is an array that shows the state at time t+n
P is the transition matrix

In this study, the classic Markov process is used to create probabilistic forecasting models for the bridge 
deterioration process. The forecasting model then is used to statistically determine the optimal bridge inspection 
intervals. In summary, the following steps are taken:

Calculation of transition probabilities and creation of the transition matrix using historical data from 1992 
to 2016
Prediction of bridge conditions in 2017 based on their conditions in 2016 using the transition matrix
Analysis of the prediction accuracy and validation of the model
Calculation of the probability of possible future conditions for a bridge based on its current condition under 
the classic Markov model 
Selection of a risk tolerance for the bridge owner
Determination of inspection intervals based on the predicted transition probabilities and the risk tolerance



Analysis of Bridge Conditions in Ohio

Transition probabilities from each bridge condition to other conditions are calculated using Ohio NBI data from 
1992 to 2016. More than 503,000 acceptable transitions were recorded. Table 2 shows the resulting transition 
matrix. The transition matrix indicates that at any condition rate, there is a significantly higher chance that the bridge 
remains at that condition rate. For example, if a bridge is in condition 6, there is a 93.36% chance that the bridge 
will stay in condition 6 until the next year.

Table 2

Transition Matrix for the Classic Markov Model 

Conditions 9 8 7 6 5 4 3 to 1
9 85.80% 12.55% 1.28% 0.31% 0.04% 0.02% 0.01%
8 0.00% 89.08% 9.42% 1.35% 0.10% 0.04% 0.01%
7 0.00% 0.00% 89.86% 9.41% 0.59% 0.12% 0.02%
6 0.00% 0.00% 0.00% 93.36% 5.80% 0.77% 0.07%
5 0.00% 0.00% 0.00% 0.00% 92.53% 7.05% 0.42%
4 0.00% 0.00% 0.00% 0.00% 0.00% 95.03% 4.97%

3 to 1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100%

The probabilities that the bridge condition will change to condition 5, 4, and 3 or lower are 5.8%, 0.77%, and 0.07%, 
respectively. Now, the prediction ability of the Markov process should be tested to validate the model. The expected 
number of bridges in each condition rate in 2017 is predicted using the developed classic Markov model based on 
the 2016 data. Table 3 shows the actual number of bridges in each condition rate in 2016, the predicted number of 
bridges in each condition in 2017, and the actual number of bridges in each condition in 2017.

Table 3

Actual and Predicted Number of Bridges in each Condition

Year / Condition 9 8 7 6 5 4 3 to 1
Actual Numbers in 2016 2545 5393 7416 6817 2623 1104 284

Forecast Numbers for 2017 2183.7 5123.4 7204.7 7143.4 2872.7 1297.6 356.4
Actual Numbers in 2017 2307 5289 7328 6884 2804 1212 358

The predicted number of bridges in each condition in 2017 was calculated as follows:

The mean absolute percentage error (MAPE) calculated using the following formula is 3.44%.

where
is the actual value
is the forecast value
is the number of fitted points

The absolute percentage error for each condition varies from less than 1 percent to 7 percent. The very low 
forecasting error measure indicates that the model has robust prediction power.



Determining Inspection Intervals Using Classic Markov

A bridge in condition j can be represented using a unit array that has zero in all elements except the corresponding 
element to condition j, which is 1. For example, the corresponding unit array to a bridge in condition 6 is

To determine the optimized inspection interval, first the Markov forecasting process is conducted for the unit bridge 
array for the next n years. The outcomes show the probability of transition from the origin condition (i.e., condition 
j) to other conditions at the end of each year. For example, Table 4 shows the transition probability for a bridge 
currently in condition 5 during the next 10 years. 

Table 4

Transition Probability for a Bridge Currently in Condition 5

Prediction Step / Condition 9 8 7 6 5 4 3 to 1
Current Year 0.00% 0.00% 0.00% 0.00% 100% 0.00% 0.00%
After 1 Year 0.00% 0.00% 0.00% 0.00% 92.53% 7.05% 0.42%
After 2 Years 0.00% 0.00% 0.00% 0.00% 85.63% 13.22% 1.15%
After 3 Years 0.00% 0.00% 0.00% 0.00% 79.23% 18.60% 2.17%
After 4 Years 0.00% 0.00% 0.00% 0.00% 73.32% 23.26% 3.42%
After 5 Years 0.00% 0.00% 0.00% 0.00% 67.85% 27.27% 4.88%
After 6 Years 0.00% 0.00% 0.00% 0.00% 62.78% 30.70% 6.52%
After 7 Years 0.00% 0.00% 0.00% 0.00% 58.09% 33.60% 8.30%
After 8 Years 0.00% 0.00% 0.00% 0.00% 53.76% 36.03% 10.22%
After 9 Years 0.00% 0.00% 0.00% 0.00% 49.74% 38.03% 12.23%

After 10 Years 0.00% 0.00% 0.00% 0.00% 46.03% 39.65% 14.32%

Table 4 indicates that the likelihood that a bridge in condition 5 will transition to the caution state (i.e., condition 3 
or below) after 5 years is 4.88%. Therefore, if the risk tolerance of the bridge owner is 5%, the optimal inspection 
interval is 5 years, which is the longest duration that has a probability of transition to the caution state that is less 
than the risk tolerance (i.e., 5%). If the risk tolerance were 3%, for example, the optimized inspection interval would 
be 3 years.

Table 5 shows the optimal inspection intervals for bridges currently in different conditions based on a 5% risk 
tolerance.

Table 5

Optimal Inspection Intervals for 5% Risk Tolerance

Current Condition Optimal Inspection Interval
9 25 years
8 21 years
7 16 years
6 12 years
5 5 years
4 1 year

The outcomes presented in Table 5 indicate that with a 5% risk tolerance, the 24-month inspection interval is too 
long for bridges in condition 4 because there is a 9.68% chance that those bridges will transition to condition level 3 
or below within the next 2 years. For bridges currently in condition 5 or higher, the 24-month is too pessimistic. The 
optimized inspection interval ranges from 5 years for bridges in condition 5 to 25 years for bridges in condition 9.



Conclusion and future works

A probabilistic model based on the classic Markov process was created to predict future bridge conditions based on 
historical data. The model was applied on a dataset consisting of information about more than 27,000 bridges in the 
state of Ohio from 1992 to 2017. The forecasting results indicate that the model can predict future conditions 
accurately with less than 3.5% error. Using the Markov forecasting model, a statistical process to determine optimal 
inspection intervals was developed. The statistical process is flexible and can be adjusted based on the risk tolerance 
and the threshold for caution state. In this study, the empirical analysis was conducted based on a 5% risk tolerance, 
and condition 3 was considered the threshold for the caution state. However, other risk tolerances and thresholds can 
be used as well. The results of this study indicate that the typical 24-month inspection interval is considerably 
pessimistic and not necessary for all bridges currently in condition 5 or higher. However, a 24-month interval is too 
optimistic and risky for bridges currently in condition 4 or lower. The primary contribution of this study to the body 
of knowledge is its creation of probabilistic models to forecast bridge deterioration and statistically determine the 
optimal inspection intervals. The outcomes of this study help bridge owners and transportation agencies assign 
maintenance resources efficiently and invest the millions of dollars currently funding unnecessary inspections into 
much-needed infrastructure development projects. Although this study was conducted using the FHWA bridge data 
for the state of Ohio, the proposed methodology and analysis could be used for similar datasets in other states.
Analyzing the impacts of bridge characteristics such as design, material, age, deck area, and ADT on deterioration 
rates and developing causal models that predict future bridge conditions based on their main characteristics is a topic 
for future studies.
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