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Equipment managers perform economic life analyses to define targets of average cost rate and 

service life useful in managing equipment fleets.  The resulting targets are based on collective 

data, while machines must be managed individually, which is labor intensive and it may not be 

practical to apply an appropriate level of scrutiny to each machine in large fleets.  An early 

warning system to identify economically troubled machines early in their service life will allow 

management to focus efforts.  Economic success was defined as realized economic life greater 

than 75 percent of target life.  Logistic regression based on cost and use metrics constructed from 

typical fleet data was used to accurately predict economic success or failure for 378 single axle 

dump trucks.  Models were internally and externally validated to establish a predictive accuracy 

of approximately 70 percent, which is sufficient to allow managers to confidently focus their 

managerial efforts on those machines where failure is predicted.   
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Introduction 
 

Fleet managers routinely face a variety of difficult decisions when balancing the cost efficiency of a fleet with the 

requirements for capacity, safety, and productivity.  Inherent into nearly all of these decisions is a consideration of 

cost and a need for accurate cost data.  Economic life is perhaps the paramount consideration of cost efficiency, as it 

defines management targets for average cost rate and service life, as well as allowing for the development of annual 

owning and operating cost budgets for individual machines (Vorster 2009).   

 

Typically, economic models of equipment are developed on the basis of cost minimization or profit maximization 

(Douglas 1975).  In the case of heavy equipment, average cost minimization is the traditional model (Terborgh 1949).  

Existing cost minimization methodologies applied to construction equipment include the cumulative cost model 

(CCM), period cost based method (PCB), and annual cost method.   

 

Vorster (1980) first proposed the CCM as a graphical representation of machine age versus cumulative cost, which is 

represented by either the sum of or net present value of all expenses to date.  This model has been proven effective 

when applied to large equipment fleets that have data records for the life of each machine in the study. Hildreth and 

Williams (2013) applied the CCM to a range of equipment types within a state transportation agency fleet.  The CCM 

is noted to be both stable and representative of similar machines, but also has the noted limitation of scarcity of quality 

available cumulative or life-to-date (LTD) data (Mitchell et al. 2011).    

 

Mitchell et al. (2011) present the PCB methodology that based on the concept of CCM, but overcomes the data 

availability limitation by using data collected over a limited period of time.  However, the authors note that PCB data 

tends to be less stable than LTD data and the results may not represent costs normally expected for machines over the 

data collection age range.  Dulin and Hildreth (2013) applied the PCB methodology to a fleet of equipment and 

determined that it is a practical alternative to the CCM, provided data is collected over a minimum period of one year. 

 

A third alternative for developing economic models is the annual cost method, where costs and use are modeled based 

on a snapshot in time.  Presentation of this methodology applied to equipment fleets can be found in (Kaufmann et al. 

2010) and (Kaufmann et al. 2012).  Hildreth and Williams (2013) note that the results of the annual cost methodology 

compared well with those from the CCM, but that variability inherent in annual cost data may mask the increasing 

nature of operating costs required to estimate economic life. 
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The CCM relies on complete cost and use data and is the best option for developing economic models of construction 

equipment.  The PCB relies on a snippet of cost and use data, which allows it to be applied to a broader population of 

equipment and particularly when previously owned machines are purchased.  The PCB method is effective when 

models are carefully developed and applied appropriately.  The annual cost method relies on a snapshot of cost and 

use data, but the likely noisy data results in models that can be difficult to apply. 

 

Regardless of the methodology applied, economic life based on cost minimization remains the paramount analysis for 

fleet managers.  Not only does it establish targets for service life and minimum average cost, but the results can be 

used to develop annual operating cost budgets and plan for equipment replacement to manage average fleet age.   

 

Background 
 

The North Carolina Department of Transportation (NCDOT) has sponsored three research projects to develop 

economic models for equipment classes in the fleet.  Annual cost and use data were used to develop economic 

models by equipment class in the first two studies (Kaufmann et al. 2010, Kaufmann et al. 2012).  Difficulty in 

predicting economic life was noted by Kaufmann et al. (2012) for some equipment classes because variability within 

the annual data masked the increasing nature of operating costs.  Annual cost data is inherently noisy because it 

reflects annual economic performance, which varies from year to year.  It was recommended that the cumulative 

cost model be explored because LTD cost and use data more accurately reflect the phenomena resulting in economic 

life.  

 

Hildreth and Williams (2013) applied the cumulative cost modeling methodology to four select equipment classes in 

the third NCDOT study.  Machine use, annual operating costs, and purchase price data was collected over the 10 

year period from 2003 to 2012 for equipment model years ranging from 2003 to 2008.  Cost data was adjusted for 

inflation using the Consumer Price Index (CPI) to a common basis.  Inflation adjusted cumulative costs were then 

divided by the inflation adjusted purchase price to yield a normalized cumulative cost index (CCI) representing cost 

as a fraction of purchase price for each machine.  Individual machine data was validated to ensure quality and to 

confirm the applicability of the Mitchell curve used in the cumulative cost methodology to model operating costs.  

Economic models were developed for each equipment class to include both owning costs and operating costs and 

used to produce the estimates economic life shown in Table 1. 

 

Table 1 
 

Economic life estimates  
Equipment Class Economic Life 

Code Description Unit 

Age (hrs 

or miles) 

Owning 

Rate ($/hr 

or $/mile) 

Operating 

Rate ($/hr 

or $/mile) 

Total Rate 

($/hr or 

$/mile) 

0201 5000 GVW pickup trucks Miles 198,000 $0.09 $0.28 $0.37 

0205 33000 GVW single axle dump trucks Miles 105,000 $0.42 $0.90 $1.32 

0314 Rubber tired backhoe loaders Hours 5,900 $9.59 $19.84 $29.43 

0900 Motor graders Hours 6,000 $18.69 $33.58 $52.27 

 

The resulting economic life estimates establish management targets based on collective data from each equipment 

class.  However, machines must be managed individually with respect to repair/rebuild/replace decisions.  For fleets 

with even a moderately large number of machines, individual machine management is labor intensive and it may not 

be practical to apply an appropriate level of scrutiny to each machine.  

 

Significant differences in the economic performance of individual machines were noted by Hildreth and Williams 

(2013).  To effectively manage a large fleet where economic performance varies within an equipment class, it would 

be beneficial to develop an early warning system to identify economically troubled machines early in their service 

life.  Such a system would allow management to focus efforts on those troubled machined needing and deserving of 

close scrutiny.   
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The currently collected and maintained data regarding the costs and use of equipment allow for the development of 

metrics that may be useful in predicting whether an individual machine will realize an economic life similar to the 

target value.  These metrics should reflect the LTD cost performance and use of the machine.  To be beneficial to 

fleet managers, accurate predictions must be available early in the service life so that actions can be taken to avoid 

unnecessary and undesirable costs.  Potential metrics include: 

 

1. Ratio of repair costs to purchase price (R/P) – the LTD repair costs experienced normalized by purchase 

price to reflect the investment required to keep the machine operational 

2. Ratio of repair costs to fuel costs (R/F) - the LTD repair costs experienced divided by LTD fuel costs to 

reflect use as well as repairs 

3. Average annual use (AAU) – the LTD machine age in hours or miles divided by the age in years of the 

machine to reflect the use of the machine 

 

Logistic Regression 
 

Logistic regression is a mathematical modeling technique appropriate for describing the relationship between one or 

more independent variables and a dependent variable where the outcome is discrete in nature (Hosmer and 

Lemeshow 1989).  The dichotomous probability of outcomes is measured by 0 or 1, representing failure and success 

respectively.  A logistic regression model estimates the odds of occurrence for an event, which is the ratio of the 

probability of occurrence to the probability of non-occurrence.  The natural logarithm of the odds follows a linear 

model constructed from the independent variables, as shown in Equation 1 for the instance where there is only one 

independent variable 

 

 Ln(
p

1-p
) = C0 + C1X1         (1) 

 

or  

 

 p = 
1

1+ e-(C0+C1X1)
          (2) 

 

where p is the probability of occurrence, C0 is a constant, C1 is a coefficient estimated from the data, and X1 is the 

independent variable.  In this form, the probability of occurrence ranges from 0 to 1 as the natural logarithm of the 

odds ranges from -∞ to +∞.   

 

In summary, logistic regression supports estimating the probability of an event with only two possible outcomes (i.e. 

occurrence or non-occurrence) based on the demonstrated effect of one or more independent variables.  Logistic 

regression has been applied in construction research for predicting contractor failure (Russell and Jaselskis 1992), 

bid decisions (Lowe and Parvar 2004), contract disputes (Diekmann and Girard 1995) and satisfaction with dispute 

resolution (Cheung et al. 2010).  Within the realm of an early warning system for economic failure of equipment, 

success is defined as the occurrence of realizing an economic life for a machine that is approximately equal to or 

greater than the target economic life for machines in the class, and the previously defined cost and use metrics are 

the independent variables. 

  

Methodology 
 

A fleet of 414 single axle dump trucks model years 2003 to 2008 were used to assess the potential of logistic 

regression for forecasting economic failure (and/or success) based on available cost and use metrics.  LTD cost and 

age data were developed for individual machines from annual measures.  Age data was in miles driven and the cost 

data used was in terms of total operating cost normalized by purchase price.  The CPI was used to adjust all cost 

values for inflation and to the common economic basis of 2012 dollars.  The Mitchell curve, a second order 

polynomial model of LTD normalized cost based LTD machine age, was developed for each machine in the form 

shown in Equation 3, 

 

 Y = A x2 + B x           (3) 
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where Y is the LTD operating cost, A and B are coefficients estimated from the data, and x is machine age.  As 

described in Hildreth and Williams (2013), data from 378 machines showed operating costs incurred at an increasing 

rate, as indicated by an A coefficient greater than zero.  When cost data has been normalized by the purchase price, 

economic life is inversely proportional to the square root of the A coefficient (Mitchell et al. 2011).  Considering a 

residual value of 20 percent of the purchase price, economic life can be estimated by Equation 4, 

 

 L*= √
0.8

A
           (4) 

 

where L* is the age at economic life.  Economic life was estimated for each of the 378 machines where A was 

greater than zero and used to categorize each machine as an economic success or failure.  Economic success was 

defined as when economic life was greater than or equal to 75 percent of the target economic life for the equipment 

class.  For the dump trucks, target economic life was 102,500 miles and the success threshold was 76,874 miles.   

 

The R/P, R/F, AAU metrics were calculated through interpolation of the annual data for a machine age of 40,000 

miles or approximately 40 percent of the target life.  This machine age was selected to provide a balance of cost and 

use experienced by the machine with an age early enough for potential action to be taken to mitigate a high 

probability of economic failure.  A total of 319 machines had reached an age of 40,000 miles, while 59 machines 

had not yet aged to 40,000 miles and could not be used in the analysis. 

 

This set of 319 machines were randomly split to provide a dataset for model development and a separate dataset for 

model validation.  Seventy percent, or 223 machines, were used for model development and 30 percent, or 96 

machines, were used for validation.  A separate model was developed and validated for each metric, and models 

based on the combined effects of metrics were not considered.  Each model developed was assessed based on the 

statistical significance of the independent variable, the significance of the full model with respect to the null model 

(model with no independent variables), and the prediction accuracy within the development dataset.  The Wald 

The log-likelihood statistic was used test the significance of the full model at the same confidence level.   

 

The prediction accuracy was assessed at the cutoff value that provided the greatest accuracy.  The cutoff value is the 

probability that delineates between predicted success and failure.  Predicted probabilities of success greater than or 

equal to the cutoff are designated a success and predicted probabilities below the cutoff are designated as failure.  

The area under the receiver operating characteristics (ROC) curve is a measure of model discrimination, or the 

ability to correctly classify, and was used to assess predictive power. 

 

The performance of predictive models is overvalued when it is measured only against the data used to develop the 

models (Steyerberg et al. 2001).  The performance can be validated by assessing model accuracy using a dataset 

external to the model development dataset.  External validation was performed by applying the developed model to 

the validation dataset and assessing the resulting predictive accuracy.   Where the predictive accuracy achieved 

through external validation is similar to that found from the development dataset, the models can be considered valid 

in terms of prediction.   

 

Results 
 

Model development revealed that each metric (independent variable) was statistically significant and the resulting 

models were both significant and substantially accurate.  The coefficients resulting from model development were 

all well below the 0.05 threshold value for significance and are shown in Table 2.   
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Table 2 
 

Coefficients of logistic regression  

Metric 

Constant Coefficient Independent Variable Coefficient 

b0 S.E. Wald p-value b1 S.E. Wald p-value 

R/P 3.10 0.42 53.81 2.21E-13 -13.02 2.08 39.03 4.17E-10 

R/F 2.80 0.40 47.80 4.71E-12 -3.81 0.67 32.72 10.7E-08 

AAU -2.45 0.59 17.40 3.03E-05 0.33 0.06 27.61 1.48E-07 

 

The logistic regression model developed for the R/P metric was the most statistically significant with a p-value three 

to four orders of magnitude less than the other models, as shown in Table 3.  The R/P model also had the greatest 

total accuracy largely due to ability to accurately predict economic success, although the total accuracy was similar 

to that from the R/F model.  The AAU model had the least total accuracy at 72 percent.  The R/F model provided the 

best balance of accurate predictions of both economic successes and failures.   

 

Table 3 
 

Significance and accuracy of logistic regression models 

Metric 

Model Prediction Accuracy Area under ROC 

Curve Chi-Sq p-value Cutoff Success Failure Total 

R/P 58.23 2.33E-14 0.55 89% 53% 77% 79% 

R/F 45.82 1.29E-11 0.60 85% 59% 76% 78% 

AAU 38.35 5.92E-10 0.55 81% 54% 72% 74% 

 

The cutoff values shown in Table 3 are the values that were used to delineate success and failure.  In applying the 

models, success was predicted when the probability of economic success was greater than the cutoff, and vice versa.  

The cutoff value is also used to determine the threshold metric value, against which machine performance can be 

measured.  The logistic model developed for the R/F metric is shown in Figure 1.  From the figure, the R/F value 

corresponding to the 60 percent cutoff value is 0.63.   

 

This R/F metric threshold can be directly applied to individual single axle dump trucks in this fleet.  If the total 

repair costs are more than 63 percent of the total fuel costs when the truck reaches 40,000 miles, then it is predicted 

that the truck will not realize at least 75 percent of the target economic life.  Similarly, it was found that economic 

success was likely when the total repair costs were no more than 22 percent of the purchase price, or when the truck 

averages more than 8,140 miles per year in operation. 
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Figure 1: Logistic regression model of economic success based on R/F metric 

 

The ROC curves for the developed models are shown in Figure 2.  The diagonal represents a model with no ability 

to discriminate between successes and failures, which is equivalent to flipping a coin.  The area under this diagonal 

is 0.5, and the ROC curve for an ideal or perfect model would follow the left and top edges and have an area under 

the curve of 1.  Models where the area under the ROC curve is at least 0.7 are considered “fair” and an area of 0.8 is 

“good”.  Each of the developed models had a “fair” level of discrimination based on the area under the respective 

curves.  However, both the R/P and R/F models were near the “good” level.   
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Figure 2: ROC curves for logistic regression models 

 

At the previously established cutoff values, the validation results showed that the models were able to predict 

success or failure at accuracy rates near or above 70 percent.  This is considered quite good for models developed 

from field data rather than from carefully designed and controlled experimentation.  The model validation results are 

provided in Table 4.  The total accuracy rates for each of the models was approximately equal to that found during 

model development.  The area under the ROC curve was also similar for each model, with the values from 

validation slightly less for each model.  These results indicate that the models can be used to not only provide 

reasonably accurate predictions of economic success, but also to discriminate between success and failure at a 

machine age of 40,000 miles, or approximately 40 percent of the target life. 

 

Table 4 
 

Model validation results 

Metric 

Prediction Accuracy 

Area under ROC Curve Success Failure Total 

R/P 84% 51% 72% 79% 

R/F 89% 37% 70% 76% 

AAU 75% 46% 65% 70% 

 

Conclusion 
 

Logistic regression based on cost and use metrics is a viable method of accurately predicting economic success or 

failure early in the life of a machine.  The proposed metrics, R/F, R/P, and AAU, are readily available from the data 

currently maintained as part of a fleet management program.  While the model developed from the AAU data was 

acceptable, the models based on R/F and R/P were found to have greater predictive accuracy and to be better at 

discriminating between success and failure. 

 

For the fleet of single axle dump trucks analyzed, economic success or failure was accurately predicted for greater 

than 70 percent of the machines.  External validation confirmed this level of predictive accuracy.  This level of 

accuracy would allow fleet managers to confidently focus their managerial efforts on those machines where failure 

is predicted.  The cutoff limit determined through the analysis provides a single metric and value against which 

individual machines can be quickly and easily be assessed.  The question of what, if any, remedial action should be 

taken remains and cannot be answered through a predictive model.  Rather, a root cause analysis should be 

performed to determine the cause and evaluate corrective actions when failure is predicted. 

 

It should be noted that this work focused on a single class of equipment at a single age, single axle dump trucks at 

age 40,000 miles.  Future work should extend this to younger ages to determine if adequate models can be 

developed even earlier in machine life, and to older ages to determine the effect of age on the predictive 

performance.  Additionally, the methodology presented should be extended to other classes of equipment to evaluate 

the potential for application across a fleet of equipment. 
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