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This paper reports the results of a diagnostic investigation concerning students‟ abilities to 

problem-solve while calculating area, converting inches to a decimal equivalency, calculating 

volume and volume including slope. Integral to this investigation is whether or not there is a 

difference in performance between students using paper-and-pencils or using calculators to 

problem solve.  Subjects within this study included 172 upper level construction students. This 

study found that students generally have difficulty solving these type problems with an average 

score of 62.8%.  Students that use a calculator are significantly better at providing an accurate 

solution than those using paper-and-pencil. In all cases investigated, as the problem became more 

difficult students were more likely to draw images in an effort to clearly model the problem 

variables and relationships. 
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Rational 

 

Activities directed toward teaching and evaluating a student‟s cognitive skills pervades almost all 

areas of instruction and is involved in most professional areas of learning. The mission of 

educational institutions is to impart knowledge and to teach cognitive skills, which includes 

skills in problem-solving ability (Frederikson, 1984). There is a significant body of empirical 

literature on cognition, problem solving, and mental modeling (Anderson, 1983; Johnson-Laird, 

1983; Johnson-Laird et al., 1989; Schoenfeld, 1992). 

 

The state of Texas established the College Readiness Program (HB1, 2006) which is a 

collaborative project between the Texas Education Agency and the Texas Higher Education 

Coordinating Board to develop minimum standards for curricula, professional development 

materials in English, math, science, and social studies. Within these college-readiness standards a 

graduating high school senior must possess and demonstrate proficiency in these selected 

curricular areas (TCRS, 2007). Section I numerical reasoning states that a student must be able to 

perform accurate computations with real numbers such as add, subtract, multiply, and divide and 

solve problems involving rational numbers, ratios, percents, and proportions in context of 

situation. Section IV measurement reasoning requires that a student must be able to convert 

within a single measurement system by converting between basic units of measurement within a 

system. 

 

It has often been noticed that some construction management students cannot seem to be able to 

solve problems involving simple arithmetic. It appears to be getting worse while the secondary 

state educational system and University claims to be setting higher and higher entrance 

standards, program cut levels, and exit requirements. This study investigates mathematical 

problem solving through a diagnostic test given within a construction equipment course. This 

activity may at first seem out of place; however the first portion of the course is dedicated to 



 

providing students with project take-off instruction targeting heavy-civil work. The instructional 

strategy is to provide students with project and task knowledge to be recalled and applied within 

later activities that require them to select appropriate project equipment, calculate machine and 

attachment production times, and forecast project equipment costing. The purpose of this 

research is to identify where students have difficulty solving simple math problems, and to 

provide the understanding necessary to develop a teaching activity that will affect a positive 

change in student performance. 

 

Problem solving is a formal logic system that includes principles, which identify well-formed 

formulas and rules of derivation, which when correctly applied lead to correct solutions. 

Therefore, one way to assess a student's problem solving ability is to vary accompanying aspects 

of the task to identify the affect on the subject's performance (Kobrin & Young, 2003). Rouse 

and Morris (1986) argued that varying the task can be an important factor that influences the 

mental model of the problem set, the procedural algorithm invoked, and its resulting solution. 

 

Within the literature there is a “math war” underway and it has continued now for twenty years. 

For over thirty years students have had classroom access to calculators and computers and this 

has had an affect upon the teaching strategies and learning within the mathematics curriculum 

(Barton, 2000; Hembree & Dessart, 1986). There are two sides to the controversy. The first is 

defined as “fuzzy math” or the reformers (Starr, 2002; Van de Walle, 1999) which is intended to 

allow students to discover broad mathematical concepts on their own and then reinforce them 

with repetition and practice. The “traditional math” or the basics is the old “kill and drill” which 

concentrates on computational skills using automatized paper-and-pencil, drill and practice (Van 

de Walle, 1999). The reformer argue that students have failed to retain the paper-and-pencil 

skills previously learned, that any tool that can enhance student performance should be 

implemented, and the reduction in activity time provides students with more problem-solving 

time with which to discover new concept relationships (Anthony, 1999; Koop, 1982). 

Traditionalists argue that technology should not be used to replace basic understanding and 

intuitions, students who do not understand basic skill may not have success in future classes, 

students will not learn computational algorithms which may be detrimental to the learning 

process and advanced development (McNamara, 1995). Both sides agree that mean performance 

is greater when students use calculators. It is clear that the students within the current equipment 

coursework are products of the math reformation. 

 

Comprehending mathematical word problems correctly and then translating them into organized 

expressions and equations, is a crucial part of doing construction based management, science, 

and technology. While there are numerous investigations that have examined mathematical 

reasoning and problem solving with respect to disabilities (Rourke & Conway, 1997) and 

elementary education (Johnson, 1944), this researcher has not been able to identify any empirical 

research on arithmetic calculations at the university level that are investigated by this study. It 

might be said that our academic body of math educators have passed over higher education or in 

the words of Devlin (1999), a senior mathematics researcher at Stanford: 

 

First, living in today's world does not require that everyone must have arithmetic ability. 

Second, even if it did, considerable evidence suggests that such an ability cannot be 

taught in school settings. ... Today, we have cheep and readily available machines that do 



 

arithmetic. Today's citizen no more needs to know how to add, subtract, multiply, or 

perform long division than to be able to plow or ride a horse. (p. 3) 

 

Clearly, a construction student must be able to calculate area, convert an inch measure into its 

decimal equivalency, calculate volume, and integrating the slope of a ditch slope into a volume 

measurement and that he or she will not always have a calculator on their person when the time 

comes to solve a problem integrating one or more of these unifying math concepts. This study 

will investigate the differences in paper-and-pencil and calculator problem solving. It is 

hypothesized that paper-and-pencil students will not be as successful as calculator students while 

computing their solutions. 

 

 

Methodology 

 

The design of the study was a 2 × 2 × 4 factorial which included two between-subject factors 

(instrument type and instrument iteration). The instrument type had two levels (no-calculator and 

calculator) as did the instrument iteration (A and B). The mathematical problem-solving included 

(area, conversion, volume, and slope). 

 

The sample (N = 172) consisted of students enrolled in a construction equipment course. Two 

instrument type treatment populations were sampled as well as four instrument populations 

within each of those groups: the paper-and-pencil group in the spring and summer of 2005 (n = 

80) included both A (n = 41) and B (n = 39) instrument iterations, while the calculator group in 

the spring and summer of 2006 (n = 92) also included iterations A (n = 47) and B (n = 45). All 

students had been accepted into the upper level of program study and included these university 

levels: U2 (n = 3), U3 (n = 41), and U4 (n = 128). Ninety-one percent of the sample was male, 

with a mean age of 22.7, and an average final grade point of 82.3 percent. The subjects were 

given two separate quiz points for taking both the Test of Logical Thinking (TOLT) and the 

diagnostic test. Subjects were randomly assigned by student selected seating and by odd and 

even iteration handout. A review of the research was conducted and acceptance was provided by 

the Institutional Review Board for Human Subjects. 

 

The TOLT is an instrument that is used to measure five modes of formal thinking: 1) controlling 

variables, 2) proportional reasoning, 3) combinatorial reasoning, 4) probabilistic reasoning, and 

5) correlational reasoning. A subject‟s level of thinking is evaluated by not only the question 

solution but how they justify their solution (Tobin & Capie, 1981). The on-line TOLT is used to 

determine if between-instrument subjects have the same reasoning ability. 

 

The diagnostic instrument developed required students to solve simple problems involving 

calculating square yard area, converting inches to a decimal equivalency, cubic yard volume, and 

the volume of a sloped ditch within a 10 minute time period. Only one question per concept was 

developed, in that, the mathematics was first introduced to the students in the fifth grade and 

academic practice can be demonstrated as continuing into the present. Two test iterations with 

differing length, width, and depth values controlled for cheating by alternating the test iteration 

to ever other student. The one hour course sections were scheduled between 9:10 AM and 1:40 



 

PM and the tests were given on Wednesdays. The questions as well as the solution algorithms 

are provided in Appendix A. 

 

 

Analysis 

 

Instrument scoring was conducted by evaluating for correctness of response. A correct response 

was assigned 1 point and an incorrect response was assigned 0 points. During the scoring of the 

data set, an additional and separate measure was established. That measure represented the 

presence of drawn images within the problem work area. This might provide insight into the 

graphical nature of student problem solving. Drawing an image was valued as 1 point and 0 

points for no drawing. 

 

In order to answer the questions raised in this study and to provide the appropriate statistical 

analysis, all data points were first fit to the Shapiro-Wilk test for an analysis of Normal 

Goodness-of-Fit and it was found that the data was not normally distributed. Therefore, two 

different nonparametric tests were used in order to support the constancy and reliability of the 

findings. The Wilcoxon/Kruskal-Wallis test and the Van der Wareden test, both using a normal 

and a chi-square approximation (p <=.05), were performed by using JMP 5.1 (SAS Institute, 

2003) to test differences among groups. These two tests almost always gave the same 

conclusions, and thus reinforced one another in terms of the reported results of this research 

study. Only the Wilcoxon/Kruskal-Wallis test results will be reported where both tests found 

significant differences. 

 

An analysis of group differences on the independent factors of instrument type and the 

instrument iteration by the dependent factors of course final grade and the TOLT was conducted. 

This analysis was necessary to determine if the sample populations were the drawn from the 

same population. No significant differences among or between these measures were found. 

Therefore, the sampled populations are equally representative of the same population of subjects. 

 

Total Percent Correct 

 

Significant differences were found on the percent correct for problem solutions with an 

instrument mean of 35.0% (SD = 0.26). The calculator group (M = 0.40, SD = 0.23) significantly 

scored higher (p = .0063) than the paper-and-pencil group (M = 0.30, SD = 0.28). No significant 

differences were found on the number of problem drawings with mean of 25.7% (SD = 0.14). 
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Figure 1: Subject performance on diagnostic instrument. 



 

 

A “Bug” (VanLehn, 1990) analysis was conducted of the procedural algorithms recorded by the 

subjects while problem solving for each of the instrument questions. Two procedural errors were 

identified that accounted for 27.8% of the solution and problem solving errors. These errors were 

identified as a „solution round error‟ and a „computational round error‟. The solution round error 

was where the solution was not rounded as requested in the problem‟s instructions and the 

computational round error was committed by using a rounded valued during the solution 

computation. Both of these errors produced incorrect answers, but the algorithmic process that 

the subject used was found to be correct. If the solution round errors were allowed, the problem-

solving mean would be increase to 43.5% (SD = 0.25) and if the computational round errors 

were allowed, the problem-solving mean would further be increase to 62.8% (SD = 0.33). By 

allowing this scoring adjustment, the calculator group (M = 0.76, SD = 0.28) continued to 

significantly score higher (p = <.0001) than the no-calculator group (M = 0.47, SD = 0.32). Due 

to the possible confounding of differences in problem values between instrument iterations and 

the potential of the first and second questions queuing subject‟s to commit the rounding errors 

within the third question, the remainder of the reported problem scores will take into account 

these errors by reporting performance after these errors have been allowed and scored as correct. 

 

Percent Correct by Question 

 

On question one which evaluated area calculations, the mean correctness score was 60.5% (SD = 

0.49). Significant differences were found for problem solutions between the calculator group 

mean (M = 0.67, SD = 0.47) and the paper-and-pencil group mean (M = 0.53, SD = 0.50). The 

calculator subjects scored significantly higher (p = .0472) than did the paper-and-pencil subjects. 

No significant differences were found on the number of problem drawings which had a mean of 

14.0% (SD = 0.35), the paper-and-pencil group had a mean of 0.064, SD = 0.33 and the 

calculator group had a mean of 0.076, SD = 0.36. 

 

For question two which evaluated decimal equivalency conversion, the mean correct solution 

score was 85.5% (SD = 0.35). Significant differences were found for problem solutions between 

the calculator group mean (M = 0.99, SD = 0.10) and the paper-and-pencil group mean (M = 

0.70, SD = 0.46). The calculator subjects scored significantly higher (p = .0472) than did the 

paper-and-pencil subjects. No subjects drew problem images while problem solving for this 

question. 

 

For question three, calculating a volume in cubic yards, the mean correctness of solutions was 

42.4% (SD = 0.50). Significant differences were found for problem solutions between the 

calculator group mean (M = 0.63, SD = 0.49) and the paper-and-pencil group mean (M = 0.19, 

SD = 0.39). The calculator subjects scored significantly higher (p = <.0001) than did the paper-

and-pencil subjects. No significant differences were found on the number of problem drawings 

which had a grand mean of 6.4% (SD = 0.25). The paper-and-pencil group‟s mean was 0.04, SD 

= 0.28) and the calculator group‟s mean was 0.03, SD = 0.15). 

 

Question four which involved calculating a ditch volume with sloped sides, the mean correctness 

of solutions was 17.4% (SD = 0.38). Significant differences were found for problem solutions 

between the paper-and-pencil group mean (M = 0.24, SD = 0.43) and the calculator group mean 



 

(M = 0.12, SD = 0.33). The paper-and-pencil subjects scored significantly higher (p = .0429) 

than did the calculator subjects. Significant differences were not found on the number of problem 

drawings with a grand mean of 82.6% (SD = 0.38). The paper-and-pencil group‟s mean was 

0.44, SD = 0.35) and the calculator group‟s mean was 0.38, SD = 0.42). 
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Figure 2: Student performance on correctness by question. 
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Figure 3: Student drawing diagram by question. 

 

Algorithmic Problem-solving Errors 

 

As a part of this diagnostic investigation, students were required to record their problem-solving 

algorithms on the instrument so that a „bug‟ analysis could be conducted. More than one error 

could be recorded per algorithmic procedure. Table 1 is a percentage of errors committed, listing 

the identified bugs by total instrument, and then divided by calculator and no-calculator 

instrument types. This error analysis does not include errors caused from rounding and does not 

include subjects who did not show their work. The average for students not showing their work 

was 15.1% for questions one and three and 80% on question two. Averaging across all questions 

for not showing work by calculator (M = 6.4) and no-calculator (M = 40.4) illustrates that nearly 

half of the paper-and pencil students either did not attempt to solve the problems or did not 

record the solution processes. Question four is not included, in that, 86.4 % of all students could 

not answer this problem correctly and much of their attempted work could not be deciphered. 

 

 



 

Table 1 

 

Classifications of Problem-solving Errors 

 All Calculator No-calculator 

Population (N = 172) Q #1 Q #2 Q #3 Q #1 Q #2 Q #3 Q #1 Q #2 Q #3 

Subjects that committed 

errors 
66 25 97 30 1 32 36 24 65 

Percent that did not show 

work 
13.6% 80.0% 16.5% 6.7% 0.0% 12.5% 19.4% 83.3% 18.5% 

Algorithms that were 

analyzed 
57 5 81 28 1 28 29 4 53 

Error Type          

Area Calculation N/A N/A 3.7% N/A N/A 0.0% N/A N/A 5.7% 

Area Conversion  68.4% N/A 4.9% 60.7% N/A 10.7% 75.9% N/A 1.9% 

Conversion Inches to 

Decimal 
N/A 40.0% 28.4% N/A 0.0% 7.1% N/A 50.0% 39.6% 

Used Square Yd as Square 

Ft 
N/A N/A 40.7% N/A N/A 0.0% N/A N/A 62.3% 

Conversion Cu Ft to Cu 

Yd 
N/A N/A 28.4% N/A N/A 32.1% N/A N/A 26.4% 

Failed to Convert 15.8% N/A 18.5% 28.6% N/A 10.7% 3.4% N/A 22.6% 

Arithmetic in Division 0.0% 60.0% 9.9% 0.0% 
100.0

% 
3.6% 0.0% 50.0% 13.2% 

Arithmetic in 

Multiplication 
8.8% 0.0% 12.3% 3.6% 0.0% 0.0% 13.8% 0.0% 18.9% 

Copied from Neighbor 3.5% 0.0% 2.5% 3.6% 0.0% 7.1% 3.4% 0.0% 0.0% 

Unknown 3.5% 0.0% 21.0% 3.6% 0.0% 28.6% 3.4% 0.0% 17.0% 

 

To further illustrate the errors committed the following are image scans illustrating student errors 

by category see Appendix B. 

 

 

Conclusions 

 

It was hypothesized that paper-and-pencil students would not be as successful as calculator 

students while computing their solutions.  This study‟s results support this hypothesis. The 

results indicate that there were differences between the higher performing calculator group and 

the lower performing paper-and-pencil group. The significance of these results indicate that 

students cannot problem-solve in the simple unifying math concepts investigated by this study 

and there is an increase in problem drawing activity when students work with more difficult 

compound volumes. 

 

On question one, of the 57 students who erred and showed their work the largest percentage of 

error resulted from the student‟s using an incorrect conversion factor for converting the square 

foot area of a surface into square yards (68.4%). They did not have the construct that there were 

9 square feet in a square yard. This error was more prevalent within the no-calculator group with 



 

75.9% committing this error. There were 15.8% that failed to convert with the calculator group 

most frequently committing this error (28.6%). The most common error within question two was 

committed by students dividing 12 or a foot by the inches of concrete thickness, with 80% of 

those who erred not showing their work. The errors of the first two questions compound their 

inability to solve the volume question.  If they cannot solve for area and cannot solve for a 

decimal equivalency factor, they sure cannot solve for cubic yards of volume.  Question three 

begins to exemplify the difficulty of categorizing the errors student make.  Many attempted to 

use their square yards measure as a square foot measure (40.7%) and compounding this error was 

that many used a cubic yards conversion factor other than 27 cubic feet in a cubic yard (28.4%). 

Many failed to convert their calculations into a cubic measure at all (18.5%) by reporting the 

measure in square feet, cubic feet and square yards. This error was committed mostly by the no-

calculator group (62.3%). The interesting differences between the two groups is the difficulty 

students within the paper-and-pencil group had in performing simple multiplication (18.9%) and 

division (13.2%) with a large portion (17.0%) falling into the “Unknown” category. Question 

four‟s algorithms were not analyzed, in that; the amount of algorithm variance was too great and 

many quit most likely not attempting the solution because they are unsure of how to proceed. 

 

Counter to the evidence presented here, students in upper level construction coursework should 

be able to score better than 60.5% on slab area questions, 42.4% on cubic yard volume questions, 

and 17.4% on volume questions compounded by ditch slope, but they do not. This generalized 

poor performance is not necessarily related to the type of tools used but more likely to a lack of 

mathematical problem solving skill. The best example of mathematical incompetence must be 

the student who provided 0 cu yd in response to question three: “Suppose that same parking lot 

in question 1 (Answer #1 was 45,000 sf.) had a paving thickness of 5” as in question 2 (Answer 

#2 was 0.42 ft.), how many cubic yards of paving material are in this parking lot? (Round up to 

nearest whole number). His algorithm was; 5 in = 1 ft ÷ 12 in = 3 yd ÷ 9 ft = 15 ÷ 108 = .138. 

Then .138 was rounded to 0. The correct volume answer of 695 cubic yards must have been lost 

in the rounding. One would be lead to believe that with eight years of concept learning in 

secondary education and the passing of college entrance examination that this type of 

mathematical problem solving would be more or less instinctive. 

 

It is clear that within this sample population students perform significantly better on both 

between-subject factors when they have a calculator available. It is also clear that as the 

problems advance in difficulty, the students draw more images of the problem in an attempt to 

understand the problem through a graphic representation of its variables. This difference may be 

the result of cognitive loading (Sweller, 1990; Chandler & Sweller, 1991). The calculator group 

may have been cognitively freer to pay attention the finer points of the questions due to a 

reduced cognitive load resulting from the use of a calculator. 

 

The larger question is; has the classroom computer usage caused the effects illuminated by this 

study? This question could be investigated by administering this instrument within an 

environment where calculators are not allowed and again where they are allowed. The author has 

and continues to collect addition data that includes modified course instruction. The current 

study being conducted tests the students after they have had remedial modules on these concepts. 

The author has also administered this instrument at the graduate level and the results are even 

more depressing. This might be a reflection of the fact that 95% of the graduates are from 



 

countries that use the metric system. The instrument could use a contrived measurement system 

to better delineate mathematical problem solving from the lack of expertise in the US measure 

system. 
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Appendix A 

Area, Conversion, Volume, Slope Diagnostic Instrument 

 

Solve the following problems, accuracy is important. Enter your solutions and units in the boxes 

provided. You must use the space provided below the question to record the formula used to 

arrive at your solution. You have 10 minutes.” The “No Calculator” instrument header included 

“DO NOT USE a calculator” and the “Calculator” instrument included “USE a calculator”. 

 

Question 1 - Area (Square Yards) or (Length × Width) ÷ 9) 

 

http://www.education-world.com/a_curr/curr071.shtml
http://www.education-world.com/a_curr/curr071.shtml
http://www.collegereadytexas.org/
http://www.mathematicallysane.com/analysis/reformvsbasics.asp


 

A-1. Suppose you have a commercial project with a parking lot measuring 100‟ by 300‟, 

how many square yards are in this parking lot? (Round up to nearest whole number) 

Paper: ((100. ft. × 300. ft.) ÷ 9 sf.) = 3,333.3 sy. or 3,334 sy. 

Calculator: (100. ft. × 300. ft. ÷ 9 sf.) = 3,333.3 sy. or 3,334 sy. 

 

B-1. Suppose you have a commercial project with a parking lot measuring 150‟ by 300‟, 

how many square yards are in this parking lot? (Round up to nearest whole number) 

Paper: ((150. ft. × 300. ft.) ÷ 9 sf.) = 5,000. sy. or 5,000 sy. 

Calculator: (150. ft. × 300. ft. ÷ 9 sf.) = 5,000. sy. or 5,000 sy. 

 

Question 2 - Conversion of inches into a Decimal Equivalency (Foot) or (Inches ÷ 12) 

 

A-2. What is the decimal equivalency of 8” in feet? (Round up to nearest hundredths) 

Paper & Calculator: (8. in.÷ 12 in.) = 0.667 ft. or 0.67 ft. 

 

B-2. What is the decimal equivalency of 5” in feet? (Round up to nearest hundredths) 

Paper & Calculator: (5. in. ÷ 12 in.) = 0.417 ft. or 0.42 ft. 

 

Question 3 - Volume (Cubic Yards) or ((Length × Width × Depth) ÷ 27) 

 

A-3. Suppose that same parking lot in question 1 had a paving thickness of 8” as in 

question 2, how many cubic yards of paving material are in this parking lot? (Round up to 

nearest whole number) 

Paper: (((100. ft. × 300. ft.) × 0.667 ft.) ÷ 27 cf.) = 741.1 cy. or 742 cy. 

Calculator: (100. ft. × 300. ft. × (8. in. ÷ 12 in.) ÷ 27 cf.) = 740.7 cy. or 741 cy. 

 

B-3. Suppose that same parking lot in question 1 had a paving thickness of 5” as in 

question 2, how many cubic yards of paving material are in this parking lot? (Round up to 

nearest whole number) 

Paper: (((150. ft. × 300. ft.) × 0.417 ft.) ÷ 27 cf.) = 695.0 cy. or 695 cy. 

Calculator: (150. ft. × 300. ft. × (5. in. ÷ 12 in.) ÷ 27 cf.) = 694.4 cy. or 695 cy. 

 

Question 4 - Volume with Slope (Cubic Yards) or (((Length) × ((Depth ÷ Rise) + (Width)) × 

(Depth)) ÷ 27) 

 

A-4. Suppose you are excavating a ditch required for the installation of a 12” water line. 

The square ditch depth is 5‟ and width is 3‟. The ditch requires a side slope of a 2:1 ratio 

(Rise: Run) required for worker safety. What is the volume of soil excavated per linear foot 

in cubic yards? (Round up to nearest hundredths) 

Paper: (((5.5 ft. × 5. ft.) × 1. ft.) ÷ 27 cf.) = 1.019 cy. or 1.02 cy. 

Calculator: (5.5 ft. × 5. ft. × 1. ft. ÷ 27 cf.) = 1.019 cy. or 1.02 cy. 

 

B-4. Suppose you are excavating a ditch required for the installation of a 12” water line. 

The square ditch depth is 6‟ and width is 4‟. The ditch requires a side slope of a 2:1 ratio 

(Rise: Run) required for worker safety. What is the volume of soil excavated per linear foot 

in cubic yards? (Round up to nearest hundredths) 



 

Paper: (((7. ft. × 6. ft.) × 1. ft.) ÷ 27 cf.) = 1.556 cy. or 1.56 cy. 

Calculator: (7. ft. × 6. ft. × 1. ft. ÷ 27 cf.) = 1.556 cy. or 1.56 cy. 

 

 

Appendix B 

Algorithmic Error Examples 

 

 
 

 
Figure 4: Area Calculation (100 ft. or 150 ft. × 300 ft.) 

 

 
Figure 5: Area Conversion Value Square Feet to Square Yard – (9 sf. per 1 sy.) 

 

 
 

 
Figure 6: Conversion Inches to Decimal Measure – (Inches / 12) 

 

 
Figure 7: Used Square Yards as Square Feet 

 



 

 
Figure 8: Volume Conversion Value Cubic Feet to Cubic Yard – (27 cf. per 1 cy.) 

 

 
 

 
Figure 9: Failed to Convert 

 

 

 
Figure 10: Arithmetic Procedure Division 

 

 
 

 
Figure 11: Arithmetic Procedure Multiplication 

 

 
Figure 12: Copied from Neighbor (100 ft. × 300 ft. instrument) 

 

 



 

 

 
Figure 13: Unknown, Total Loss of Perspective Error 

 

 
Figure 14: Unknown, What the Hey, That Can’t Be Right Error 

 


