Sustainability Consideration for Highway Facilities

Yuhong Wang, Ph.D., PE

East Carolina University Greenville, North Carolina

The construction industry has gradually started to incorporate sustainability considerations into its conventional practices. For instance, the industry has witnessed increasing interests in green building projects in recent years. However, in other construction sectors, the goals and scope of sustainability remain to be defined. The purpose of this paper is to discuss sustainability considerations for highway facilities, which can be used to assess and improve the current practices on highway planning, design, construction, and maintenance. In addition, these considerations can be used to enrich the pedagogical content of construction education, especially in the area of heavy construction. This paper has developed sustainability indicators for highway facilities and organized them according to major stages of the facility's life cycle. Based on these indicators, measurable objectives can be created by highway agencies to evaluate sustainability practices of project participants.

Keywords: Sustainable Development, Highway, Sustainability Indicator, Sustainability Metrics, Project Life-cycle

Introduction

Background

Sustainability is often used interchangeably with sustainable development. Although there are many definitions on sustainability, the most frequently cited one is 'meeting the needs of the present without compromising the ability of future generations to meet their own needs,' provided by 'United Nations World Commission on Environment and Development (WCED, 1987)'. Another frequently cited document on sustainability is Agenda 21, which specifies the framework of sustainability, as well as the policies, objectives, and activities in order to achieve it (UN, 1992). The United Nations also provides other documents on this issue through its Division for Sustainable Development, Department of Economic and Social Affairs (Web site: http://www.un.org/esa/sustdev/csd/review.htm). These documents primarily deal with sustainability issues at the national and the international levels.

In the UN documents, transportation is regarded as one of the key factors that promote economic and social development, and also a factor that significantly influences atmosphere, use of resource, and consumption of energy (UN, 1992). An important component of the transportation system is highways. The highway network plays an important role in supporting social and economic development. However, the development and operation of highways also create various issues that impact the sustainable development of a society, such as excessive land consumption, reliance on nonrenewable energy, generation of harmful emissions, and others. For example, highway transportation consumes a great amount of fossil fuel, which is not only nonrenewable, but also causes air pollution and potentially global warming. Although these issues have been widely discussed, it remains a question how they can be effectively addressed through better highway operational practices.

Existing Practices

Sustainable development can only be achieved when major business practices are sustainable. There is an increasing interest of sustainability in different fields. It seems that the most active areas are where specific indicators and metrics of sustainability have been well defined, so that industry practices can be assessed against the present standards. For instance, one effort to promote sustainability in the building industry is the certification of "green buildings." Standards have been developed to assess sustainability of individual buildings in design, construction, and operation. The BRE environmental assessment method (BREEAM) has been used to assess the environmental performance of some 600 major office buildings (BRE, 2006). In the US, there is a dramatic increase of interest in obtaining leadership in energy and environmental design (LEED_®) certification from the U.S. Green Building Council (USGBC). Since it started in 2000, more than 2000 new construction and major renovations projects had registered for LEED_® certification (USGBC, 2006). One critical factor that contributes to the success of these programs is that they have a comprehensive yet detailed rating system. Additionally, the target of rating is an individual project or a building facility, so it is more measurable and implementable.

There are also many studies on sustainability indicators and metrics for the whole transportation system. Litman from the Victoria Transport Policy Institute (VTPI) summarized existing research on sustainable transportation indicators and recommended his own (Litman, 2005). Jeon and Amekudzi reviewed and summarized 16 worldwide initiatives on sustainable transportation systems and provided a long list of sustainability indicators (Jeon and Amekudzi, 2005). These are just two examples out of numerous efforts in developing sustainability indicators in transportation. However, these studies do not focus on assessing individual transportation projects or facilities. Various sustainability issues have also been addressed through highway practices, although sometimes under different names. For example, many social and environmental issues are considered under context sensitivity solutions by many US state highway agencies (Newman et al, 2002). Several research projects were funded under the National Cooperative Highway Research Program (NCHRP) 25-25, Research for the American Association of State Highway and Transportation Officials (AASHTO) Standing Committee on the Environment, to investigate social and environmental issues in transportation. As part of the project, NCHRP study 25-25(04) presents a valuable compendium of environmental stewardship practices in highway planning, design, construction, and maintenance, primarily based on information from US state departments of transportation (DOT) and other practitioners (Venner Consulting and Brinckerhoff, 2004). However, the existing practices do not systematically cover all the dimensions of sustainability. There are also wide discrepancies among state DOTs on what environmental stewardship practices to choose and how to implement them. Unlike the commercial evaluating tools LEED® and BREEAM, no systematic documentation has been found to guide, monitor, and promote sustainability for highway projects and facilities.

Objectives of the Study

The purpose of this study, as presented in the paper, is to identify and propose sustainability indicators and metrics specific for highway projects and facilities. It is expected that the indicators and metrics can be used to guide highway agencies to make policies to promote sustainable practices. They also provide a set of issues to consider for highway practitioners

when they perform design, construction, and maintenance activities. Additionally, they provide college educators a framework of sustainability topics to be incorporated in highway construction related curriculum, so that future constructors or engineers are prepared with the relevant body of knowledge.

Method of Identifying Sustainability Indicators

Comparing to other civil infrastructures, highway facilities have many unique characteristics: Highways generally influence a large geographic area and demarcate the piece of land they cross. Most sections of highways are publicly funded and used by the public; therefore, there are a lot of stakeholders involved. During construction, there is normally a great amount of earthwork involved, which may cause erosion and impact the existing ecosystem. Some projects are carried out in rural settings and environmental sensitive areas. These are just some examples of a wide range of unique issues, which make highways have different sustainability concerns than other infrastructural facilities.

To develop sustainability indicators for highways, one needs to identify the general requirements of sustainability, which can then be refined and adapted for highway practices. According to UN's commission on sustainable development (CSD) — theme indicator framework, sustainability is categorized into four dimensions: social, environmental, economic, and institutional. Under these dimensions, there are 15 themes, 38 sub-themes, and 58 indicators, which are based on voluntary national testing and expert group consultations (UN, 2005). According to World Bank, sustainable transportation must satisfy three main requirements: economic and financial, environmental and ecological, and social (World Bank, 1996). The VTPI also divided sustainability considerations into three groups: economic, social, and environmental, which is agreed by a lot of other literature (Litman, 2005). This study adopted the three dimension approach.

There are great variations on what constitutes sustainability under these dimensions. For example, the Canadian Center for Sustainable Transportation recommends 14 sustainable transportation indicators (Gilbert and Tanguay, 2000), while the VTPI proposed 16 most important ones, 10 helpful ones, 5 specialized ones, and others (Litman, 2005). In this study, a step-by-step process was followed to find sustainability indicators for highways.

- 1. Major components of the highway system were identified.
- 2. General transportation sustainability indicators from existing research were summarized and specialized for highways.
- 3. Current highway practices that promote sustainability were summarized.
- 4. Indicators and practices from Step 2 and 3 were reorganized according to the major stages of the life-cycle of the highway facility.
- 5. Indicators and practices from Step 4 were mapped to the 15 themes in the UN CSD theme indicator framework. Gaps were filled between the themes and practices if certain themes relevant to highway were not adequately covered.

The major components of the highway system are shown in Figure 1 by a breakdown structure. In the system, there are certain building types of facilities like service stations, buildings at rest area, and buildings at maintenance stations. For these facilities, sustainability evaluation criteria

for "green buildings" may be applied. But the majority of the facilities are 'horizontal' nature, such as pavements, bridges, walls, fences, etc, which are the focus of the sustainability review in this paper.

Figure 1. Breakdown structure of major highway facilities.

An extensive literature review was conducted by this study to identify highway related sustainability indicators. Besides the previously mentioned literature, there is also a lot of research addressing specific sustainability issues. For instance, Zapata and Gambatese reviewed and compared energy consumption of asphalt and reinforced concrete pavement materials and construction (2005). Hassan et al compared the effects of runway deicers on pavement materials and environment (2002). Wada et al estimated the environmental impacts of highway runoff pollution (2002). Park et al assessed the environmental impacts on life cycle of highways (2003). These are several examples of existing studies considered when the set of indicators were developed.

The study also reviewed the current practices of promoting sustainability by highway agencies, especially US DOTs. Some of the information was obtained from DOT's websites, while others from various NCHRP reports. Different concerns addressed by these practices were summarized when developing the set of sustainability indicators.

Highways, like other infrastructure facilities, have a finite life span. At the different stage of the life-cycle of the facility, emphasis on sustainability may be different. At the planning stage, one may need to justify the construction of the highway and compare it with other transportation modes. Also, important decisions are made regarding its major components and their sustainability goals. At the design stage, the goals at the planning stage are transformed into design documents and one needs to select design features to meet specific sustainability requirements. Additional sustainability considerations may be applied to construction as well as operation and maintenance. Since there are different organizations involved, another reason to

divide stages is to clarify these organizations' responsibility and assess their individual efforts toward sustainability.

Starting from project planning, indicators were developed for each stage. Some of them were based on existing literature or practices, while others were added by this study to map the 15 themes of UN CSD theme indicator framework. When justifying these indicators, three criteria were used: first, they contribute to the 15 themes of the UN document; secondly, they are under the authority of highway agencies; and thirdly, they can be specialized to measurable objectives.

Sustainability Indicators at Different Stage of Facility Life-cycle

Sustainability Considerations at Planning Stage

Sustainability indicators and their descriptions for the planning stage are listed in Table 1. Certain indicators may be viewed as both economic and social. For example, 'mobility' is not only important to economy by promoting trade and production, but also helpful in poverty reduction. In Table 1 and the following tables, sustainability indicators that may cover more than one dimension are listed under one group only.

INDICATORS	DESCRIPTION
ECONOMIC	
Mobility	Increase of mobility, measured by the estimation of passenger
	kilometers and freight ton-kilometers, added length of highways,
	traffic volumes on the planned road, etc.
Accessibility	Clear definition of user groups; Accessibility of different user
	groups to the planned highway.
Transportation	Integration of the planned highway with other transportation
system integration	modes (aviation, railroad, etc.).
Alternative	Comparison of function and cost of the planned highway with
transportation mode	alternative transportation modes; Feasibility of the planned
	highway being replaced by more environmentally friendly
	transportation mode.
Quality of	Quality and extent of economic information that can assist
transportation	planning of the facility, such as demography, road user cost,
related economic	congestion cost, construction cost of existing similar facilities, etc.
data	
Congestion cost	Reduction of congestion cost due to the planned highway.
Growth potential	Increase of real estate value and business opportunities along the
	planned facility.
Job opportunities	Increase of job opportunities because of the project.
Life-cycle cost	Conceptual life-cycle cost of the planned highway and the
	comparison of it with other transportation modes.
Availability of	For urban highways, the availability of parking spaces at important
parking spaces	locations along the highway and the cost of building them.

Table 1. Evaluation of Sustainability at Planning Stage

Project financing	Availability of public and private funds to build, operate, and maintain the facility; Priority of the planned project compared with other public projects.
Travel efficiency	Reduction of average commute time or average home-work trip distance; Reduction of travel time of other purposes because of the planned road.
Benefit/cost of environmentally friendly features	Benefit and cost of the added features to the basic function that will improve the social and environmental values of the project.
User cost	User cost of the planned highway and the comparison of it with other transportation modes.

Table 1	Evaluation	of Sustain	ability at	Planning	Stage ((continued)
	Lvaluation	of Sustain	aunity at	I faining	Stage ((commucu)

INDICATORS	DESCRIPTION
SOCIAL	
Aesthetics	Effects of visual impact of the planned facility on its environmental context.
Community impacts	Impacts and disruptions of the facility to nearby communities
& disruption	during its construction and operation.
Pedestrian &	Planned highway features that facilitate walkers and bicyclers.
Environmental	Compliance of the planned highway with environmental laws and
justice	regulations.
Management	Integration of project management processes in planning so that
process integration	transportation and environmental issues can be analyzed simultaneously.
Involvement of	Involvement of stakeholders in making planning decisions and the
stakeholders	extent of the stakeholders' opinions are reflected.
Mixed development	Avoidance of fragmentation of human society caused by separation of highways, different land use, and real estate property values.
Preservation of	Effort of preserving cultural, historical, archeological resources
cultural &	and creating livable communities.
historical resources	
Proximity of	Identification of points of interest and special areas (e.g.,
highway facility to	commercial area, recreational area, animal outlook, scenic views,
points of interest	etc.); Closeness of the highway facility to these special locations.
Mobility services to	Quality (including accessibility, price, etc.) of transportation
disadvantaged	services for the poor, people with special mobility needs, and
residents &	non-auto users.
non-auto users	
Safety	Reduction of traffic accidents because of the planned project and

	the addition of safety features.
Transit stops &	Closeness of public transit stops/stations to future user groups.
stations	
User benefit equity	Equality of benefits of the facility to users with different income
	levels, ages, and races.

Table 1. Evaluation of Sustainability at Planning Stage (continued)

	DESCRIPTION
	DESCRIPTION
ENVIKONVIENTAL Bonowable Energy	Paduation of non-renewable energy consumption by transportation
Kenewable Energy	religion (a g correct) and facilities (a g corrige stations
	policies (e.g., carpool) and facilities (e.g., service stations
Contaminated site	Remediation of known contaminated sites within the scope of the
remediation & risk	planned project; Risk management plan for unexpected
management	contaminated sites.
Critical slopes &	Protection of critical slopes and sliding areas along the planned
sliding areas	highway;
	Using environmentally friendly techniques for slope protection.
Emissions of	Reduction of emissions of greenhouse gas and airborne pollutant
greenhouse gas &	by policies and facilities.
pollutants	
Fragmentation of	Avoidance of potential fragmentation and loss of habitat of the
ecosystems &	ecosystem caused by the highway facility and planned features;
habitat loss	Reduction of negative impacts like animal collisions and fish
	passage obstructions.
Green area	Creation of green areas along the planned facility.
Light pollution	Reduction of light pollution for people who live nearby the
	facility.
Noise pollution	Reduction of noise pollution for people who live nearby the
-	facility.
Restoration &	Restoration and creation of sustainable streams along the
creation of	right-of-way and at highway crossings.
sustainable stream	
Sitting of	Evaluation of sitting locations of maintenance facilities based on
maintenance	environmental sensitivity of the surrounding area.
facilities	
Stormwater	Treatment of stormwater and mitigation of flood risk caused by the
treatment &	planned facility.
flood Control	r ····································
Toxic materials &	Avoidance and reduction of toxic materials and hazardous waste
hazardous waste	such as asbestos, lead, volatile organic compounds (VOC), etc.
Urban sprawl	Control of urban sprawl by cautious transportation planning.
Use of land	Evaluation of the area of land occupied by transportation facilities:
	Reduction of land use by smart engineering design
Restoration&creationofsustainable streamSittingofmaintenancefacilitiesStormwatertreatment&flood ControlToxicmaterialsMazardous wasteUrban sprawlUse of land	Restoration and creation of sustainable streams along the right-of-way and at highway crossings. Evaluation of sitting locations of maintenance facilities based on environmental sensitivity of the surrounding area. Treatment of stormwater and mitigation of flood risk caused by the planned facility. Avoidance and reduction of toxic materials and hazardous waste such as asbestos, lead, volatile organic compounds (VOC), etc. Control of urban sprawl by cautious transportation planning. Evaluation of the area of land occupied by transportation facilities; Reduction of land use by smart engineering design.

Waste reduction &	Application of waste reduction and recycling program on the
recycling	planned facility.
Water pollution	Reduction of water pollutants and chemicals.
Wetland protection	Protection of wetland along the planned highway.

Sustainability Considerations at Design Stage

Sustainability indicators and their descriptions for design stage are listed in Table 2. Many of the factors are similar to those in the planning stage. However, even for the same indicator, the measurements are different. Planning may provide general concept with word descriptions, while design implements these concepts and formalizes them through contract documents such as drawings and specifications

INDICATORS	DESCRIPTION
ECONOMIC	
Benefit/cost of	Benefit and cost analysis of the added features to the basic design
environmentally friendly	that will improve the social and environmental values of the
features	project, based on design documents.
Cost, benefits, and risks	Benefit/cost and risk analysis of using waste and recycled
of using waste and	materials in the designed facility.
recycled materials	
Quality of highway	Quality and extent of economic information for the designed
related economic data	facility such as right-of-way, construction cost, etc.
Life-cycle cost	Life-cycle cost of the facility with different design alternatives.
User cost	User cost influenced by different design alternatives.
SOCIAL	
Aesthetics	Aesthetic considerations in design including the harmony of the
	project with the surrounding environment.
Community impacts &	Use of special design features to minimize disruptions of the
disruption	facility to nearby communities during its construction and
	operation.
Pedestrian & bicycle	Designed highway features that facilitate walkers and bicyclers.
Environmental justice	Compliance of design documents with environmental laws and
	regulations.
Management process	Integration of project management processes in design so that
integration	transportation and environmental issues can be analyzed
	simultaneously.
Involvement of	Involvement of stakeholders in making design decisions and the
stakeholders in making	extent of the stakeholders' opinions are reflected in design
design decisions	documents.
Mixed use of land	Design features to avoid fragmentation of human society caused
	by highway separation, different land use, and real estate property
	values.
Preservation of cultural,	Efforts of preserving cultural, historical, archeological resources

Table 2 Evaluation	n of	f Sustaina	ability a	t Design	Stage
Table 2. Evaluation	1 01	Sustaina	aunnty a	i Design	Slage

historical, archeological	and creating livable communities during design process.
resources	
Mobility services to disadvantaged residents	Design features that provide convenience for people with special mobility needs and non-auto users.
& non-auto users	
Safety	Design considerations to reduce traffic accidents.
Transit stops & stations	Design considerations to provide convenience to travelers at
	transit stops and stations.

INDICATORS	DESCRIPTION
ENVIRONMENTAL	
Contaminated site	Identification of technology and procedure for remediation of
remediation	specific contaminants on site.
Critical slopes & sliding	Design features to protect critical slopes and sliding areas along
areas	the planned highway.
Snow removal	Design features to reduce the amount of snow accumulation on
	highways and assist snow removal.
Emissions of greenhouse	Reduction of emissions of greenhouse gas and airborne pollutants
gas & pollutants	in design by specifying materials and construction methods.
Fragmentation of	Engineering design features to avoid fragmentation of ecosystems
ecosystems and habitat	and habitat loss.
loss	
Green area	Inclusion of green areas in design.
Impervious surfaces	Reduction of impervious surfaces in designed facility such as rest
	areas.
Light pollution	Design features to reduce light pollution during highway
	operation.
Noise pollution	Design features to reduce noise pollution for people who live near
	the facility.
Restoration & creation	Design features that restore and create sustainable streams along
of sustainable stream	the right-of-way and at highway crossings.
Stormwater treatment &	Design features for treating stormwater and mitigating flood risk
flood control	caused by the facility.
Toxic materials &	Selection of environmentally friendly materials to avoid and
hazardous waste	reduce toxic materials and hazardous waste such as asbestos, lead,
	volatile organic compounds (VOC), etc.
Use of land	Reduction of land consumption by smart engineering design.
Waste reduction&	Application of waste and recycled materials in the designed
recycling	facility.
Water pollution	Reduction of water pollutants and chemicals in design.
Wetland protection	Design features to protect wetland along the highway.

Table 2. Evaluation of Sustainability at Design Stage (continued)

Sustainability Considerations at Construction Stage

Sustainability indicators and their descriptions for construction stage are listed in Table 3. The majority of the indicators are different than those from the planning and design stages. In planning and design, sustainability considerations are the impacts of the highway facility, while in construction stage, only impacts of construction operations are interested. In this stage, sustainability is generally the constructor's responsibility, even though the requirement may be specified by highway agencies.

INDICATORS	DESCRIPTION
ECONOMIC	
Assistance to small &	Availability of a program to assist small and disadvantaged
disadvantaged business	business in contract awarding.
Justice in acquiring	Fairness and justice in appraising and acquiring the right-of-way;
right-of-way	Availability of an effective dispute resolution procedure.
Labor payment	Implementation of laws and regulations to ensure workers' wage
	to be paid in full amount and promptly.
Minimizing construction	Measures used in construction, including methods, temporary
impacts on traveling	facilities, and scheduling (duration & sequencing) to reduce the
public & surrounding	negative impacts of the project to traveling public and
business	surrounding business.
Owner's construction	Control of actual construction cost to complete the project within
cost control	the budget.
Prevention of corruption	Availability and implementation of laws, regulations, and
in construction	procedures to effectively prevent corruption during bidding,
	contract awarding, payment, and quality acceptance, etc.
SOCIAL	
Community impacts &	Reduction of impacts and disruptions of the facility to nearby
disruption	communities during its construction.
Environmental justice	Compliance with environmental laws and regulations during construction.
Construction /	Availability of an environment management program on the
environment integration	construction project; Integration of environment management
management	with other project management processes.
Involvement of	Involvement of stakeholders (especially nearby neighborhood,
stakeholders in	business, frequent road users) in construction planning.
construction	
Preservation of cultural	Effort of preserving cultural, historical, and archeological
& historical resources	resources during construction.
Public awareness of	Increasing public awareness of construction activities and detours
construction activities	through bulletin board, broadcasting, internet, etc.
Safety	Protection of workers in work zone and protection of passengers.
Working conditions of	Quality of sanitary, first aids, and temporary living facilities for
workers	workers.

 Table 3. Evaluation of Sustainability at Construction Stage

INDICATORS	DESCRIPTION
ENVIRONMENTAL	
Consumption of	Improvement of energy efficiency during construction;
nonrenewable energy	Reduction of nonrenewable energy consumption in
	construction.
Contaminated site	Remediation of known contaminated site, if encountered by
remediation & risk	the project;
management	Construction risk management plan for unexpected
	contaminated site.
Critical slopes & sliding	Protection of critical slopes and sliding areas during
areas	construction, preferably through environmentally friendly
	techniques such as bioengineering.
Emissions of greenhouse	Reduction of emissions of greenhouse gas and airborne
gas & pollutant	pollutants during construction.
Light pollution	Reduction of light pollution to passengers and nearby
	neighborhood during construction.
Noise pollution	Reduction of noise pollution during construction.
Preservation	Preservation of riparian areas of a stream during construction.
& protection of aquatic	Protection of aquatic resources during construction through
resources	cautious selection of construction timing and techniques.
Protection of sensitive	Protection of sensitive wildlife habitats or plant areas during
wildlife habitat or plant	construction through fencing and cautious selection of
areas	construction timing and techniques.
Restoration & creation	Restoration and creation of sustainable streams in
of sustainable stream	construction.
Reuse of water	Reuse of water generated from dewatering process and other
	Construction operations.
Prevention of spillage of	Prevention of the spillage of vehicle fluid and fuel;
venicie fluid & fuel;	Control of venicle washwater.
	Decomposition and motostion of tongoil during construction
	Preservation and protection of topson during construction.
hozordova wasta	in construction
Lise of pative plants for	In construction.
road side vegetation	Ose of native plants when planting foad side vegetations.
Waste reduction&	Reduction of construction waste:
recycling	Use of waste and recycled materials in construction
Water erosion &	Effectiveness of water erosion and sedimentation control in
sedimentation control	construction
Water pollution	Reduction of water pollutants and chemicals during
	construction.
Wetland protection	Protection of wetland during construction.
Wind erosion, dust and	Reduction of wind erosion:
mud control	Control of dust and mud from construction site.

Table 3. Evaluation of Sustainability at Construction Stage (continued)

Worksite sanitation	Worksite sanitation of the construction project.
---------------------	--

Sustainability Considerations at Operation/Maintenance Stage

Sustainability indicators and their descriptions for operation/maintenance stage are listed in Table 4. After construction, the responsibility of the highway facility is handed over to the highway agency. This is the longest stage of the life-cycle and affects both road users and community along the highway. Many activities in this stage can be carried out in a sustainable way.

INDICATORS	DESCRIPTION
ECONOMIC	
Vehicle sharing	Availability and effectiveness of a vehicle sharing program during
	the operation of the highway.
Cost effectiveness of	Cost and benefit analysis of different maintenance options (e.g.,
maintenance options	crack sealing vs. thin overlay).
Impacts of pavement	Performance of pavement and estimated user cost due to
performance on vehicle	pavement roughness and distress (e.g., potholes on damage of
operation cost	tires, rough road on vehicle operation cost, etc.).
Impact of maintenance	Measures taken in highway maintenance operations to reduce
activities on traveling	their negative impacts on traveling public and surrounding
public & surrounding	business (e.g, timing of the operation).
business	
Preventative	Preventative maintenance activities of bridges and pavements and
maintenance	their cost effectiveness
SOCIAL	
Environmental justice	Compliance of maintenance and operation activities with environmental laws and regulations.
Public awareness of	Increasing public awareness of maintenance activities, lane
maintenance activities	closures, detours, and other information through bulletin board,
	broadcasting, internet, etc.
Safety	Protection of workers in road maintenance and protection of
	passengers.
Snow removal & deicing	Promptness of snow removal; Effectiveness of deicing operations.
User satisfaction	Overall user satisfaction of the highways, measured by user
	surveys
ENVIRONMENTAL	
Consumption of	Improvement of energy efficiency and reduction of nonrenewable
nonrenewable energy	energy consumption during maintenance and operation of
	highway facilities.
Critical slopes & sliding	Continuously monitoring and maintenance of critical slopes along
areas	the highway.
Emergency plan on	Availability of emergency plan on spillage of hazardous materials
spillage of hazardous	from transport vehicles; Implementation of the emergency plan.
materials from transport	

Table 4. Evaluation of Sustainability at Operation / Maintenance Stage

vehicles	
Erosion, sedimentation,	Erosion, sedimentation, and spillage control of regular and winter
and spillage control of	maintenance materials at the maintenance facilities.
maintenance materials	
Integrated roadside	Availability of an integrated roadside vegetation management
vegetation management	program.
Maintenance of streams	Maintenance of streams along the right-of-way and at highway
	crossings
Mitigation of	Selection of appropriate snow and ice control materials to
environmental impact of	mitigate their negative environmental impacts.
snow & ice control	
Fish & wildlife habitat	Mitigation of impacts on fish and wildlife during maintenance of
enhancement	bridges and culverts; Creation and maintenance of bird habitats
	below bridge decks.
Recycling	Use of recycled materials during highway operation and
	maintenance.
Stormwater treatment	Treatment of runoff from highway, rest areas, and other facilities.
Toxic materials &	Avoidance and reduction of toxic materials and hazardous waste
hazardous waste	during highway operation and maintenance.
Waste management	Implementation of waste management plan in maintenance
	facilities;
	Removal of animal carcass, garbage, and debris from highways.

Sustainability Metrics

The indicators developed in the previous section represent a wide spectrum of possible sustainability considerations for highway facilities. In order to encourage or enforce their applications, additional steps are required, which include identifying a subset of indicators, developing measurable objectives, evaluating actual practices, and synthesizing the evaluation results.

Local highway agencies need to identify a set of indicators that are most applicable to their social, environmental, and economic context. For example, in areas that have been developed and densely populated for a long time, wild animals are very rare, if existing at all. Animal collisions on highways may not be a big concern. Therefore, it may not be selected as a sustainability indicator, while in other areas, this is a serious problem. Another example is payment to labors. In the US, laborers who work on highway projects funded through the federal government are protected by the Davis-Bacon Act of 1931, which established the requirement for paying prevailing wages. In places where late pay and pay below the minimum wage are rampant, the indicator 'labor payment' may be included to promote social equity and development of the poor.

The indicators also need to be specified to measurable objectives. For example, 'increase of mobility' is a sustainability indicator in the planning stage when different transportation modes and capacities are compared. The indicator must be measured through data such as the estimated increase of passenger kilometers, freight ton-kilometers, or added traffic volumes, etc. To further verify that the planned highway facility meets the objectives, actual data may be collected after

the highway opens to traffic.

Based on the measurable objectives, highway projects and facilities can be evaluated. Since different project participants are responsible at different stages of the life-cycle, their efforts toward sustainability should be evaluated separately. For example, at the planning and design stage, the highway agency and engineering firms that provide design service may be evaluated, while at the construction stage, the constructor may be evaluated. The parties being evaluated are responsible to provide necessary documents.

Finally, the evaluation results need to be synthesized. In the LEED_® green building rating system, in order to be certified, a building project must meet certain prerequisites and performance credits within each category. The credits are not weighed. The project can be awarded to certified, silver, gold, or platinum certification, depending on the number of credits they achieve (USGBC, 2005). In some other environmental evaluation systems, e.g., the environmental impact scores of Building for Environmental and Economic Sustainability (BEEs_®), the evaluation scores can be weighed (Lippiatt, 2002). For highway facilities, it depends on the local agency whether to weigh the sustainability score or not. The advantage of weighing is that the relative importance of each objective can be considered. The whole evaluation process, from project planning to operation and maintenance, are summarized in Figure 2.

Summary and Recommendations

Sustainable development of a society can only be achieved when its individual business process is operated in accordance with sustainability principles. Specific objectives and metrics are essential to guide the business process toward this goal. There have been many studies on general sustainability indicators for transportation, while this study concentrates on how they can be specialized for highway projects and facilities, an important component of the transportation system. Sustainability indicators were developed by reviewing the existing literature and practices primarily from the state departments of transportation in the US. Then, they are reorganized according to stages of the life cycle of the highway facilities so that not only they can be assessed progressively, the efforts of different participants can be evaluated.

The indicators represent a wide spectrum of possible sustainability considerations for highway facilities. Different countries or areas may have their own particular emphases. In practice, a highway agency can identify a subset of indicators, develop measurable objectives, evaluate the practices of responsible parties, and finally synthesize the evaluation results. It is expected that the indicators and metrics will assist the agency improving its current practices, which further contribute to sustainable development of the transportation section and the whole society. In addition, the indicators developed in this study can serve as a framework of sustainability topics for construction education. This may assist the educators in identifying the contents of sustainability related classes.

Figure 2. Summary of sustainability evaluation process.

References

BRE – Building research establishment limited. 2006. *BREEAM and EcoHomes*, Web page: http://www.bre.co.uk/services/BREEAM_and_EcoHomes.html, accessed 5/2, 2006.

Gilbert R., and Tanguay H. 2000. *Sustainable transportation performance indicators project reports*. The centre for sustainable transportation. Toronto, Canada.

Hassan Y., Halim A. O. Abd El, Razaqpur A. G., Bekheet W. and Farha M.H., Effects of runway deicers on pavement materials and mixes: comparison with road salt. *ASCE Journal of Transportation Engineering*, Vol. 128, No. 4: 385-391.

Joen, C.M., and Amekudzi, A. 2005. Addressing sustainability in transportation systems: definitions, indicators, and metrics, *ASCE Journal of Infrastructure Systems*, Vol. 11, No. 1: 31-50

Lippiatt, B.C. 2002. *Building for environmental and economic sustainability technical manual and user guide*. National Institute of Standards and Technology. Gaithersburg, MD, USA.

Litman, T. A. 2005. *Well measured: developing sustainable transport indicators*, Victoria Transport Policy Institute, Victoria, BC, Canada.

Newman, T. R., Schwartz, M., Clark L., and BEDNAR J. 2002. *A Guide to best practices for achieving context sensitive solutions*. NCHRP report 480. Transportation Research Board, Washington D.C., USA.

Park K., Hwang Y., Seo S., and Seo H. 2003. Quantitative assessment of environmental impacts on life cycle of highways, *ASCE Journal of Construction Engineering and Management*, Vol. 129, No. 1: 25-31.

UN. 1992. United nations conference on environment & development—agenda 21, united nations.

UN. 1992. *Indicators of Sustainable Development, CSD Theme Indicator Framework*, Web page: http://www.un.org/esa/sustdev/natlinfo/indicators/isdms2001/table_4.htm, accessed 8/1, 2006.

USGBC – U.S. Green Building Council, LEED_® for New Construction Info Sheet, <u>http://www.usgbc.org/DisplayPage.aspx?CMSPageID=220</u>, assessed 9/14, 2006.

USGBC – US Green Building Council. 2005. $LEED_{\ensuremath{\mathbb{B}}}$ – NC: green building rating system for new construction & major renovations. Washington D.C., USA.

Venner Consulting and Brinckerhoff, P. 2004. *Environmental stewardship practices, procedures, and policies for highway construction and maintenance*. Technical Report, Part of NCHRP Project 25-25 Project. Transportation Research Board, Washington D.C., USA.

Wada Y., Miura H., Ozaki T. 2002. Estimation of environmental impact by highway runoff pollution, *Proceedings of the ninth international conference on urban drainage*. Oregon, USA.

WCED—united nations world commission on environment and development. 1987. *Our common future*, oxford university press, oxford, UK.

World Bank. 1996. Sustainable transport: priorities for policy reform. Washington D.C., USA.

Zapata P., and Gambatese J. 2005. Energy consumption of asphalt and reinforced concrete pavement materials and construction, *ASCE Journal of Infrastructure Systems*. Vol. 11, No. 1: 9-20.